共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, two artificial intelligent systems, the artificial neural network (ANN) and particle swarm optimization (PSO), were combined to form a hybrid PSO–ANN model that was used to improve estimates of glucose and xylose yields from the microwave–acid pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on pretreatment parameters. ANN is a powerful tool capable of determining the relationship between the desired input and output data while PSO was used as a robust population-based search algorithm to optimize the performance of the ANN model. Specifically, it was used to determine the optimum number of neurons in the hidden layer and the best value of the learning rate of the ANN model. The optimization method includes minimizing the fitness function mean absolute error that was found to be 0.0176. The PSO algorithm suggested an optimum number of neurons in the hidden layer as 15 and a learning rate of 0.761 these consequently used to construct the ANN model. After constructing the hybrid PSO–ANN model, the performance of the intelligent system was examined by determining the regression coefficient (R
2) for estimating the experimental values of glucose and xylose and compared to the results from a response surface methodology (RSM) model. The results of R
2 of the hybrid PSO–ANN model for glucose and xylose were 0.9939 and 0.9479, respectively, while the RSM model results for the same sugars were 0.8901 and 0.8439. This analysis reveals that the hybrid PSO–ANN model offers a higher degree of accuracy in comparison with the more commonly used RSM model. 相似文献
2.
Harmonic estimation is the main process in active filters for harmonic reduction. A hybrid Adaptive Neural Network–Particle Swarm Optimization (ANN–PSO) algorithm is being proposed for harmonic isolation. Originally Fourier Transformation is used to analyze a distorted wave. In order to improve the convergence rate and processing speed an Adaptive Neural Network Algorithm called Adaline has then been used. A further improvement has been provided to reduce the error and increase the fineness of harmonic isolation by combining PSO algorithm with Adaline algorithm. The inertia weight factor of PSO is combined along with the weight factor of Adaline and trained in Neural Network environment for better results. ANN–PSO provides uniform convergence with the convergence rate comparable that of Adaline algorithm. The proposed ANN–PSO algorithm is implemented on an FPGA. To validate the performance of ANN–PSO; results are compared with Adaline algorithm and presented herein. 相似文献
3.
This study aimed to optimize Adaptive Neuro-Fuzzy Inferences System (ANFIS) with two optimization algorithms, namely, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for the calculation friction capacity ratio (α) in driven shafts. Various studies are shown that both ANFIS are valuable methods for prediction of engineering problems. However, optimizing ANFIS with GA and PSO has not been used in the area of pile engineering. The training data set was collected from available full-scale results of the driven piles. The input parameters used in this study were pile diameter (m), pile length (m), relative density (Id), embedment ratio (L/D), both of the pile end resistance (qc) and base resistance at relatively 10% base settlement (qb0.1) from CPT result, whereas the output was α. A learning fuzzy-based algorithm was used to train the ANFIS model in the MATLAB software. The system was optimized by changing the number of clusters in the FIS and then the output was used for the GA and PSO optimization algorithm. The prediction was compared with the real-monitoring field data. As a result, good agreement was attained representing reliability of all proposed models. The estimated results for the collected database were assessed based on several statistical indices such as R2, RMSE, and VAF. According to R2, RMSE, and VAF, values of (0.9439, 0.0123 and 99.91), (0.9872, 0.0117 and 99.99), and (0.9605, 0.0119 and 99.97) were obtained for testing data sets of the optimized ANFIS, GA–ANFIS, and PSO–ANFIS predictive models, respectively. This indicates higher reliability of the optimized GA–ANFIS model in estimating α ratio in driven shafts. 相似文献
4.
A suitable combination of linear and nonlinear models provides a more accurate prediction model than an individual linear or nonlinear model for forecasting time series data originating from various applications. The linear autoregressive integrated moving average (ARIMA) and nonlinear artificial neural network (ANN) models are explored in this paper to devise a new hybrid ARIMA–ANN model for the prediction of time series data. Many of the hybrid ARIMA–ANN models which exist in the literature apply an ARIMA model to given time series data, consider the error between the original and the ARIMA-predicted data as a nonlinear component, and model it using an ANN in different ways. Though these models give predictions with higher accuracy than the individual models, there is scope for further improvement in the accuracy if the nature of the given time series is taken into account before applying the models. In the work described in this paper, the nature of volatility was explored using a moving-average filter, and then an ARIMA and an ANN model were suitably applied. Using a simulated data set and experimental data sets such as sunspot data, electricity price data, and stock market data, the proposed hybrid ARIMA–ANN model was applied along with individual ARIMA and ANN models and some existing hybrid ARIMA–ANN models. The results obtained from all of these data sets show that for both one-step-ahead and multistep-ahead forecasts, the proposed hybrid model has higher prediction accuracy. 相似文献
5.
A multilevel hybrid Newton–Krylov–Schwarz (NKS) method is constructed and studied numerically for implicit time discretizations of the Bidomain reaction–diffusion system in three dimensions. This model describes the bioelectrical activity of the heart by coupling two degenerate parabolic equations with a stiff system of ordinary differential equations. The NKS Bidomain solver employs an outer inexact Newton iteration to solve the nonlinear finite element system originating at each time step of the implicit discretization. The Jacobian update during the Newton iteration is solved by a Krylov method employing a multilevel hybrid overlapping Schwarz preconditioner, additive within the levels and multiplicative among the levels. Several parallel tests on Linux clusters are performed, showing that the convergence of the method is independent of the number of subdomains (scalability), the discretization parameters and the number of levels (optimality). 相似文献
6.
In this paper, a novel hybrid approach is proposed for predicting peak particle velocity (PPV) due to bench blasting in open pit mines. The proposed approach is based on the combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO). In this approach, the PSO is used to improve the performance of ANFIS. Furthermore, a model is developed based on support vector regression (SVR) approach. The models are trained and tested based on actual data compiled from 120 blast rounds in Sarcheshmeh copper mine. To determine the accuracy and efficiency of ANFIS–PSO and SVR models, a statistical model (USBM equation) is applied. According to the obtained results, both techniques can be used to predict the PPV, but the comparison of models shows that the ANFIS–PSO model provides better results. Root mean square error (RMSE), variance account for (VAF), and coefficient of determination ( R 2) indices were obtained as 1.83, 93.37 and 0.957 for ANFIS–PSO model, respectively. 相似文献
7.
In general, neural network training is a nonlinear multivariate optimisation problem. Unlike previous studies, in the present study, particle swarm optimisation (PSO) and back-propagation (BP) algorithms were coupled to develop a robust hybrid training algorithm with both local and global search capabilities. To demonstrate the capacity of the proposed model, we applied the model to the predictions of the load–deformation behaviour of axially loaded piles. This is a soil–structure interaction problem, involving a complex mechanism of load transfer from the pile to the supporting geologic medium. A database of full scale pile loading tests is used to train and validate the product-unit network. The results show that the proposed hybrid learning algorithm simulates the load–deformation curve of axially loaded piles more accurately than other BP, PSO, and existing PSO–BP hybrid methods. The network developed using the proposed algorithm also turns out to be more accurate than hyperbolic and models. 相似文献
8.
Engineering with Computers - In this study, we propose a new hybrid algorithm fusing the exploitation ability of the particle swarm optimization (PSO) with the exploration ability of the grey wolf... 相似文献
9.
Engineering with Computers - Prediction of ultimate pile bearing capacity with the aid of field experimental results through artificial intelligence (AI) techniques is one of the most significant... 相似文献
10.
Particle swarm optimization algorithm is a inhabitant-based stochastic search procedure, which provides a populace-based search practice for getting the best solution from the problem by taking particles and moving them around in the search space and efficient for global search. Grey Wolf Optimizer is a recently developed meta-heuristic search algorithm inspired by Canis-lupus. This research paper presents solution to single-area unit commitment problem for 14-bus system, 30-bus system and 10-generating unit model using swarm-intelligence-based particle swarm optimization algorithm and a hybrid PSO–GWO algorithm. The effectiveness of proposed algorithms is compared with classical PSO, PSOLR, HPSO, hybrid PSOSQP, MPSO, IBPSO, LCA–PSO and various other evolutionary algorithms, and it is found that performance of NPSO is faster than classical PSO. However, generation cost of hybrid PSO–GWO is better than classical and novel PSO, but convergence of hybrid PSO–GWO is much slower than NPSO due to sequential computation of PSO and GWO. 相似文献
11.
Neural Computing and Applications - Phishing is an attack targeting to imitate the official websites of corporations such as banks, e-commerce, financial institutions, and governmental... 相似文献
12.
Hybrid electric buses have been a promising technology to dramatically lower fuel consumption and carbon dioxide (CO 2) emission, while energy management strategy (EMS) is a critical technology to the improvements in fuel economy for hybrid electric vehicles (HEVs). In this paper, a suboptimal EMS is developed for the real-time control of a series–parallel hybrid electric bus. It is then investigated and verified in a hardware-in-the-loop (HIL) simulation system constructed on PT-LABCAR, a commercial real-time simulator. First, an optimal EMS is obtained via iterative dynamic programming (IDP) by defining a cost function over a specific drive cycle to minimize fuel consumption, as well as to achieve zero battery state-of-charge (SOC) change and to avoid frequent clutch operation. The IDP method can lower the computational burden and improve the accuracy. Second, the suboptimal EMS for real-time control is developed by constructing an Elman neural network (NN) based on the aforementioned optimal EMS, so the real-time suboptimal EMS can be used in the vehicle control unit (VCU) of the hybrid bus. The real VCU is investigated and verified utilizing a HIL simulator in a virtual forward-facing HEV environment consisting of vehicle, driver and driving environment. The simulation results demonstrate that the proposed real-time suboptimal EMS by the neural network can coordinate the overall hybrid powertrain of the hybrid bus to optimize fuel economy over different drive cycles, and the given drive cycles can be tracked while sustaining the battery SOC level. 相似文献
13.
The vibration domain of structures can be reduced by imposing some constraints on their natural frequencies. For this purpose optimal design of structures under frequency constraints is required which involves highly non-linear and non-convex problems. In this paper an efficient hybrid algorithm is developed for solving such optimization problems. This algorithm utilizes the recently developed colliding bodies optimization (CBO) algorithm as the main engine and uses the positive properties of the particle swarm optimization (PSO) algorithm to increase the efficiency of the CBO. The distinct feature of the present hybrid algorithm is that it requires no parameter tuning. The CBO is known for being parameter independent, and avoiding the use of the traditional penalty method to handle the constraints upholds this property. Two mathematical constrained functions taken from the literature are studied to verify the performance of the algorithm. The algorithm is then applied to optimize truss structures with frequency limitations. The numerical results demonstrate the efficiency of the presented algorithm for this class of problems. 相似文献
14.
The mathematical modelling of the keloid disease triggered by a virus has been recently investigated by one of the authors, Bianca (2011) [5], where it was shown that the model is able to depict the emerging behaviours which occur during the keloid formation.This paper deals with further numerical investigations of that model related to the bifurcation analysis of the measurable macroscopic variables associated to each functional subsystem. It is shown that there exists a critical value of a bifurcation parameter separating situations where the immune system controls the keloid formation from those where malignant effects are not contrasted. 相似文献
15.
Reservoir flood control operation (RFCO) is a complex multi-objective optimization problem (MOP) with interdependent decision variables. Traditionally, RFCO is modeled as a single optimization problem by using a certain scalar method. Few works have been done for solving multi-objective RFCO (MO-RFCO) problems. In this paper, a hybrid multi-objective optimization approach named MO-PSO–EDA which combines the particle swarm optimization (PSO) algorithm and the estimation of distribution algorithm (EDA) is developed for solving the MO-RFCO problem. MO-PSO–EDA divides the particle population into several sub-populations and builds probability models for each of them. Based on the probability model, each sub-population reproduces new offspring by using PSO based and EDA methods. In the PSO based method, a novel global best position selection method is designed. With the help of the EDA based reproduction, the algorithm can lean linkage between decision variables and hence have a good capability of solving complex multi-objective optimization problems, such as the MO-RFCO problem. Experimental studies on six benchmark problems and two typical multi-objective flood control operation problems of Ankang reservoir have indicated that the proposed MO-PSO–EDA performs as well as or superior to the other three competitive multi-objective optimization algorithms. MO-PSO–EDA is suitable for solving MO-RFCO problems. 相似文献
17.
Minimally invasive surgery helps patients by accelerating postoperative recovery. However, its application is impeded because it is necessary for the surgeons performing such surgery to possess surgical skills of a high order. Therefore, a master-slave combined manipulator (MCM) has been proposed as a robotic tool that enhances the surgeon's skill in laparoscopic surgery. The master grip and the slave hand are combined through the manipulator body, and a surgeon can operate the tool near the patient. The slave hand is controlled electrically by the master grip and its position is directly controlled by the surgeon. A prototype model of the MCM has been developed. The functions of the MCM have been verified by basic evaluation tests and the MCM has been used in a preliminary animal experiment. This paper describes the concept, the basic performance and the validation of the MCM. 相似文献
18.
This work presents a novel hybrid meta-heuristic that combines particle swarm optimization and genetic algorithm (PSO–GA) for the job/tasks in the form of directed acyclic graph (DAG) exhibiting inter-task communication. The proposed meta-heuristic starts with PSO and enters into GA when local best result from PSO is obtained. Thus, the proposed PSO–GA meta-heuristic is different than other such hybrid meta-heuristics as it aims at improving the solution obtained by PSO using GA. In the proposed meta-heuristic, PSO is used to provide diversification while GA is used to provide intensification. The PSO–GA is tested for task scheduling on two standard well-known linear algebra problems: LU decomposition and Gauss–Jordan elimination. It is also compared with other states-of-the-art heuristics for known solutions. Furthermore, its effectiveness is evaluated on few large sizes of random task graphs. Comparative study of the proposed PSO-GA with other heuristics depicts that the PSO–GA performs quite effectively for multiprocessor DAG scheduling problem. 相似文献
20.
The aim of the job–shop scheduling problem is to optimize the task planning in an industrial plant satisfying time and technological constraints. The existing algorithmic and mathematical methods for solving this problem usually have high computational complexities making them intractable. Flexible job–shop scheduling becomes even more complex, since it allows one to assign each operation to a resource from a set of suitable ones. Alternative heuristic methods are only able to satisfy part of the constraints applicable to the problem. Moreover, these solutions usually offer little flexibility to adapt them to new requirements. This paper describes research within heuristic methods that combines genetic algorithms with repair heuristics. Firstly, it uses a genetic algorithm to provide a non-optimal solution for the problem, which does not satisfy all its constraints. Then, it applies repair heuristics to refine this solution. There are different types of heuristics, which correspond to the different types of constraints. A heuristic is intended to evaluate and slightly modify a solution that violates a constraint in a way that avoids or mitigates such violation. This approach improves the adaptability of the solution to a problem, as some changes can be addressed just modifying the considered chromosome or heuristics. The proposed solution has been tested in order to analyse its level of constraint satisfaction and its makespan, which are two of the main parameters considered in these types of problems. The paper discusses this experimentation showing the improvements over existing methods. 相似文献
|