首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h~(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h~(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn~(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn~(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.  相似文献   

2.
The manufacture,physical characterization,environmental applications and cytotoxicity properties of nanocomposites consisting of CuO/CeO2 nano-rare earth composite materials prepared using the coprecipitation method at molar ratio of 6:4 with aqueous solutions of copper nitrate and cerium nitrate were reported.The performance of the selective catalytic oxidation of ammonia to N2(NH3-SCO) over a CuO/CeO2 nano-rare earth composite materials in a tubular fixed-bed reactor(TFBR) at temperatures from 423 to 673 K in the presence of oxygen was elucidated.The catalytic redox behavior was determined by cyclic voltammetry(CV).The nanocomposite particles were characterized by TEM,with a tiny particle size around 10 nm with high dispersion phenomena.Further,cell cytotoxicity and the percentage cell survival were determined by using 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenol)-2-(4-sulfophenyl)-2H-tetra-zolium(MTS) assay on human lung MRC-5 cell line.Experimental results showed that no apparent cytotoxicity was observed when the MRC-5 was exposed to the CuO/CeO2 nanocomposite materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号