首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.  相似文献   

2.
The graphite (Gr)/MoS2 reinforced Mg self-lubricating composites were prepared through powder metallurgy. The composites were characterized for microstructure, physical, mechanical and wear properties. Gr/MoS2 phase in the composites was identified by XRD analysis. Microstructural observation showed that the Gr/MoS2 particles were homogeneously dispersed within the magnesium matrix. Micro-hardness was measured using an applied load of 5 g with a dwell time of 15 s at room temperature. Hardness of all the composites was measured to be in the range of VHN 29–34. The mechanical properties were studied using micro-hardness, tensile and compression tests. A fractographic analysis was performed using scanning electron microscope. The highest values of hardness, compressive strength and tensile strength were attained using Mg–10MoS2 composite. A pin-on-disk tribometer was used to measure the friction coefficient and the wear loss of the sintered composites. In addition to that, the friction and wear mechanism of the composites were systematically studied by worn surface characterization and wear debris studies using SEM analysis. The reduced friction coefficient and wear loss were achieved in MoS2 rather than Gr.  相似文献   

3.
Aluminum alloy base surface hybrid composites were fabricated by incorporating with mixture of (SiC+Gr) and (SiC+Al2O3) particles of 20 μm in average size on an aluminum alloy 6061-T6 plate using friction stir processing (FSP). Microstructures of both the surface hybrid composites revealed that SiC, Gr and Al2O3are uniformly dispersed in the nugget zone (NZ). It was observed that the addition of Gr particles rather than Al2O3 particles with SiC particles, decreases the microhardness but immensely increases the dry sliding wear resistance of aluminum alloy 6061-T6 surface hybrid composite. The observed microhardness and wear properties are correlated with microstructures and worn micrographs.  相似文献   

4.
Nickel-coated TiO2 particulate reinforced Al6061 matrix composites developed using the vortex technique were hot forged at a temperature of 500 °C. A constant deformation ratio of 6:1 was adopted. Hot forged Al6061 alloy and Al6061-TiO2 composites were then subjected to heat treatment by solutionizing at a temperature of 530 °C for duration of 2 h followed by ice quenching. Both natural and artificial aging at 175 °C were performed on the quenched samples from 2 to 8 h duration in steps of 2. Microstructure, microhardness, and dry sand abrasive wear behavior of both matrix alloy and developed composites in both as-forged and heat-treated conditions have been evaluated. Worn surface studies have been carried out using scanning electron microscope. Results have revealed that nickel-coated TiO2 particles are uniformly distributed through out the matrix alloy. Microhardness of Al6061-TiO2 composites increases with increase in percentage of reinforcement. Heat-treated forged alloy and its composites possesses higher hardness when compared with the forged composites. Forged Al6061-TiO2 composites exhibited lower abrasive wear loss when compared with the forged matrix alloy. Heat treatment has a profound effect on the abrasive wear resistance of both as-forged Al6061 alloy and Al6061-TiO2 composites.  相似文献   

5.
高阻尼AA6061/SiCp/石墨复合材料的制备与性能   总被引:1,自引:0,他引:1  
介绍采用粉末冶金法制备AA6061/SiCp/石墨混杂金属基复合材料的工艺过程,并对复合材料的力学和阻尼性能进行了初步探讨。粉末冶金法制备的AA6061/SiCp/石墨混杂金属基复合材料中增强增阻颗粒分布均匀,其体积分数可精确控制,加之制备温度低,可避免有害的界面反应。SiC颗粒作为增强剂能够增加复合材料的刚度和强度,而石墨颗粒为增阻剂可以提高复合材料的阻尼特性。试验结果表明,能够应用粉末冶金法制  相似文献   

6.
Two types of composites were prepared with Al−4.5Cu alloy as a matrix using stir casting method. One was reinforced with 10 wt.% of SiC and 2 wt.% of MoS2. The other was reinforced with 10 wt.% of SiC and 4 wt.% of MoS2. Their surfaces were remelted using a CO2 laser beam with an objective to study the influence of laser surface melting (LSM). The topography, microhardness, corrosion resistance and wear resistance of the laser melted surfaces were studied. Overall surface integrity after LSM was compared with as-cast surface. LSM enhanced the microhardness and wear resistance of the surface in each case. Porosity of the laser melted surface was low and corrosion resistance was high. Thus, LSM can be conveniently applied to enhancing the surface integrity of the aluminium composites. However, there is an optimum laser specific energy, around 38 J/m2 in this study, for obtaining the best surface integrity.  相似文献   

7.
Abstract

The feasibility of friction stir welding for joining AA 1100 based metal matrix composites reinforced with B4C particulate is studied for 16 and 30%B4C volume concentrations. For both composites, friction stir welding has a significant influence on the particle size distribution and the matrix grain size. For the 16% composite, the average particle size decreases after welding by ~20% and the grain size from 15 to 5 μm as measured in the weld nugget. Tensile testing of welded joints showed up to 100% joint efficiency for both annealed AA 1100–16%B4C and AA 1100–30%B4C composite materials. However, if the ultimate tensile strength values of all the studied composites are similar at ~130 MPa, then the weld ductility is higher for the annealed materials. Furthermore, it was observed that varying the welding speed between 100 and 275 mm min?1 does not influence the tensile properties and the particle size distribution in the nugget.  相似文献   

8.
The (Cu−10Sn)−Ni−MoS2 composites, prepared by powder metallurgy, were studied for the effects of Ni-coated MoS2 on the microstructure, mechanical properties and lubricating properties. The mechanism of effects of Ni and MoS2 on the properties of composites was analyzed through a comparative experiment by adding Ni and MoS2 separately. The results show that the nickel wrapping around the MoS2 particles decreases the reaction rate of MoS2 with the copper matrix, and greatly improves the bonding of the matrix. The composites with 12 wt.% Ni-coated MoS2 (C12) show the optimum performance including the mechanical properties and tribological behaviors. Under oil lubrication conditions, the friction coefficient is 0.0075 with a pressure of 8 MPa and a linear velocity of 0.25 m/s. The average dry friction coefficient, sliding against 40Cr steel disc, is measured to be 0.1769 when the linear velocity and pressure are 0.25 m/s and 4 MPa, respectively.  相似文献   

9.
Zirconium has recently garnered attention for use as a diffusion barrier between U–Mo nuclear fuels and Al cladding alloys. Interdiffusion and reactions between Zr and Al, Al-2 wt.% Si, Al-5 wt.% Si or AA6061 were investigated using solid-to-solid diffusion couples annealed in the temperature range of 425° to 625 °C. In the binary Al and Zr system, the Al3Zr and Al2Zr phases were identified, and the activation energy for the growth of the Al3Zr phase was determined to be 347 kJ/mol. Negligible diffusional interactions were observed for diffusion couples between Zr vs. Al-2 wt.% Si, Al-5 wt.% Si and AA6061 annealed at or below 475 °C. In diffusion couples with the binary Al–Si alloys at 560 °C, a significant variation in the development of the phase constituents was observed including the thick τ1 (Al5SiZr2) with Si content up to 12 at.%, and thin layers of (Si,Al)2Zr, (Al,Si)3Zr, Al3SiZr2 and Al2Zr phases. The use of AA6061 as a terminal alloy resulted in the development of both τ1 (Al5SiZr2) and (Al,Si)3Zr phases with a very thin layer of (Al,Si)2Zr. At 560 °C, with increasing Si content in the Al–Si alloy, an increase in the overall rate of diffusional interaction was observed; however, the diffusional interaction of Zr in contact with multicomponent AA6061 with 0.4–0.8 wt.% Si was most rapid.  相似文献   

10.
Cu and Cu-MoS2 coatings were fabricated by cold spray, and the fretting wear performance of the two coatings was compared. A mixture (95 wt.% Cu + 5 wt.% MoS2) was used as feedstock for the composite coating. Coatings were sprayed with identical gas flow conditions on the substrates pre-heated to approximately 170 °C. The morphology of coating top surface and polished cross sections was analyzed by scanning electron microscopy (SEM) and light optical microscopy (LOM). The influence of MoS2 on Cu deposition was examined. The local MoS2 concentration within the coating was found to affect the hardness. Fretting tests were carried out at two different normal loads, and the influence of MoS2 on friction and wear was studied. The morphology and elemental compositions of the wear scars and wear debris were observed by SEM and energy dispersive x-ray spectroscopy (EDS), respectively.  相似文献   

11.
In the present study, the reciprocating wear behavior of 7075Al/SiC composites and 6061Al/Al2O3 composites that are prepared through liquid metallurgy route is analyzed to find out the effects of weight percentage of reinforcement and load at the fixed number of strokes on a reciprocating wear testing machine. The Metal Matrix Composite (MMC) pins are prepared with different weight percentages (10, 15 and 20%) of SiC and Al2O3 particles with size of 36 μm. Hardness of these composites increases with increase in wt.% of reinforcement. However, the impact strength decreases with increase in reinforcement content. The experimental result shows that the volume loss of MMC specimens is less than that of the matrix alloy. However, the volume loss is greater in 6061Al/Al2O3 composites when compared to 7075Al/SiC composites. The temperature rise near the contact surface of the MMC specimens increases with increase in wt.% of reinforcement and applied load. The coefficient of friction decreases with increase in load in both cases.  相似文献   

12.
The effect of an addition of Sc and Zr on the precipitation behavior of AA6061 alloy was investigated. AA6061 alloy containing Sc and Zr showed different age hardening behavior compared to unadulterated AA6061 alloy. The hardness of the AA6061 alloy peaked when aged for 5 h at 190 °C due to the formation of β″ phases, whereas that of AA6061 alloy containing Sc and Zr peaked at 12 h of aging, and was greater than that of AA6061 alloy when aged for 24 h to 36 h. Thermally stable Al3(Sc, Zr) phases with a L12 structure and low density of β″ phases were found in the Sc- and Zr-added AA6061 alloy aged for 5 h at 190 °C. Transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) revealed that the precipitation rate of the β″ phases was retarded by the addition of Sc and Zr to AA6061 alloy.  相似文献   

13.
Eutectic high entropy alloys (EHEAs) have high temperature stability, good mechanical properties, and are promising for tribological applications at high temperatures. To study the high temperature lubrication behavior, Fe22Co26Cr20Ni22Ta10?(BaF2/CaF2)x (x=3?20, wt.%) composites were prepared by spark plasma sintering (SPS), with BaF2/CaF2 eutectic powder used as solid lubricant. The lubrication behavior and mechanical properties were studied at both room and high temperatures. With the increase of the content of BaF2/CaF2 eutectic powder, the friction coefficients and the wear rates of the composites at 600 and 800 °C decrease significantly. The composites with eutectic powder content of 15 and 20 wt.% have the best lubricating performance at 600 °C, with low friction coefficient and wear rates, mainly due to the good mechanical properties of EHEA matrix, the lubrication effect of BaF2/CaF2 phase and the oxides formed on the worn surface.  相似文献   

14.
《Corrosion Science》1999,41(3):529-545
The influence of the heat treatments on the corrosion behaviour of three aluminium matrix composites (AA6061/Al2O3/10p–20p and AA7005/Al2O3/10p) has been analysed in an aerated 3.5% sodium chloride solution. Corrosion potentials were determinated in a 3.5% sodium chloride solution (NaCl) using the ASTM standard G69-81 [1]. The galvanic series and the pitting potentials were calculated in this medium for all composites. The following heat treatments were applied on the base composites: (a) as-received state (T4), (b) T6 treatment, (c) an annealing, consisting of a solution stage at 560°C for 3 h for the AA6061 MMC and (d) an annealing at 482°C for 2 h for the AA7005/Al2O3/10p, followed by a cooling in the atmosphere furnace. The localised corrosion susceptibility of each material and for each heat treatment were analysed by measurement of the cyclic potentiodynamic polarization. Optical microscopy and SEM metallographic studies were carried out on the samples, before and after corrosion tests, to determine the influence of the microstructural changes during heat treatments on the corrosion behaviour.  相似文献   

15.
Ni-P coated Si3N4 reinforced Al6061 composites were fabricated by vortex method. Percentage of reinforcement was varied from 6 wt.% to 10 wt.% in steps of 2. Cast matrix alloy and developed composites were hot forged at a temperature of 500 °C using a 300T hydraulic hammer. Both as cast and hot forged matrix alloy and its composites were subjected to microstructure studies, grain size analysis, microhardness and abrasive wear tests. Microstructure studies reveal uniform distribution of silicon nitride particles with good bond between matrix and reinforcement in both as cast and hot forged condition. It is observed that, increased content of reinforcement in both as cast and hot forged composites do result in significant grain refinement. However, when compared with as cast matrix alloy and its composites hot forged alloy and its composites exhibits higher extent of grain refinement. Both as cast and hot forged composites exhibit improved microhardness and abrasive wear resistance when compared with the unreinforced alloys under identical test conditions. Abraded worn surfaces were examined using scanning electron microscopy (SEM) for possible wear mechanisms. Increased abrasive particle size and load has resulted in larger extent of grooving leading to increased abrasive wear loss for both the matrix alloy and developed composites.  相似文献   

16.
Hot compression behavior of Al6061/Al2O3 nanocomposite was investigated in the temperature range of 350–500 °C and the strain rate range of 0.0005–0.5 s?1, in order to determine the optimum conditions for the hot workability of nanocomposite. The activation energy of 285 kJ/mol for the hot compression test is obtained by using hyperbolic sine function. By means of dynamic material model (DMM) and the corresponding processing map, safe zone for the hot workability of AA6061/Al2O3 is recognized at temperature of 450 °C and strain rate of 0.0005 s?1 and at temperature of 500 °C and the strain rate range of 0.0005–0.5 s?1, with the maximum power dissipation efficiency of 38%. Elongated and kinked grains are observed at 400 °C and strain rate of 0.5 s?1 due to the severe deformation.  相似文献   

17.
Ultrahigh-temperature ceramics were added to C/C composites to meet their application requirement in a high-temperature oxidizing environment. C/C−ZrB2−SiC composites were fabricated by high-solid-loading slurry impregnation with polymer infiltration and pyrolysis. The dispersion and rheological behavior of ZrB2 slurry and the microstructural, mechanical, and ablation properties of the C/C−ZrB2−SiC composites were investigated. Results indicated that a well-dispersed and low-viscosity ZrB2 slurry was obtained using 0.40 wt.% polyethyleneimine as a dispersant at pH 5. Ceramics were uniformly distributed in the short-cut fiber layer and needle-punched area. The flexural strength of the C/C−ZrB2−SiC composites was 309.30 MPa. The composites exhibited satisfactory ablation resistance under the oxyacetylene flame of 2500 °C, and the mass and linear ablation rates were 0.40 mg/s and 0.91 μm/s, respectively. A continuous and compact ZrO2 layer, which could effectively reduce the diffusion rate of oxygen and protect the composites from being ablated, was formed.  相似文献   

18.
Duplex surface treatment, which combines the oxygen diffusion hardening with a deposition of low friction MoS2(Ti,W) coating, was applied to improve the Ti-6Al-4V alloy load bearing capacity and tribological properties. The coating (3.1 μm thick) was deposited on the oxygen hardened alloy by magnetron sputtering. Microstructure characterisation was performed by scanning- and transmission electron microscopy methods, as well as X-ray diffractometry. The results of micro/nanostructural analyses performed by high-resolution transmission electron microscopy showed that the coatings are composed of MoS2 nanoclusters embedded in an amorphous matrix. Some Ti α, W, and Ti2S nanocrystals were also found in the coating microstructure. The wear resistance and friction coefficient of the hardened oxygen, as well as the coated alloy, was investigated at room temperature (RT), 300 °C, and 350 °C. The presence of the MoS2(Ti,W) coating decreases the friction coefficient from 0.85 for the oxygen hardened alloy to 0.15 (at RT) and 0.09 (at 300 °C and 350 °C) for the coated one. The coating essentially increases the wear resistance of the alloy at RT and 300 °C. It was found that the wear resistance of the coated alloy decreased significantly during the wear test performed at 350 °C.  相似文献   

19.
Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss ~ 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss ~ 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness (Ra = 6.53 µm) compared to the sample sintered at 1500 °C (Ra = 0.66 µm) corroborating the abrasion wear test results.  相似文献   

20.
30–50 wt.% graphite nanoflakes (GNFs)/6061Al matrix composites were fabricated via spark plasma sintering (SPS) at 610 °C. The effects of the sintering pressure and GNF content on the microstructure and properties of the composites were investigated. The results indicated that interfacial reactions were inhibited during SPS because no Al4C3 was detected. Moreover, the agglomeration of the GNFs increased, and the distribution orientation of the GNFs decreased with increasing the GNF content. The relative density, bending strength, and coefficient of thermal expansion (CTE) of the composites decreased, while the thermal conductivity (TC) in the X?Y direction increased. As the sintering pressure increased, the GNFs deagglomerated and were distributed preferentially in the X?Y direction, which increased the relative density, bending strength and TC, and decreased the CTE of the composites. The 50wt.%GNFs/6061Al matrix composite sintered at 610 °C under 55 MPa demonstrated the best performance, i.e., bending strength of 72 MPa, TC and CTE (RT?100 °C) of 254 W/(m·K) and 8.5×10?6 K?1 in the X?Y direction, and 55 W/(m·K) and 9.7×10?6 K?1 in the Z direction, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号