首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper analyses the corrosion behaviour of naturally and artificially aged AA2024 alloy in NaCl solution and in the presence of an environment-friendly corrosion inhibitor, CeCl3. On the basis of the values of polarisation resistance and corrosion current density, the corrosion resistance of the protective inhibitor film is established as well as the general corrosion resistance of this aluminium alloy. Resistance to pit formation is determined based on the difference in pitting and corrosion potentials while resistance to pit growth is determined based on the amount of charge consumed during pit growth. A scanning electron microscope is used to examine the morphology of the pits formed during the pitting corrosion testing, as well as to determine the cerium content on intermetallic particles and the matrix AA2024 alloy. The corrosion behaviour of AA2024 alloy is investigated after different test periods in NaCl solution and in the same solution with the CeCl3 inhibitor. The corrosion resistance of both tempers of AA2024 alloy is more than one order of magnitude higher in the presence of CeCl3. An explanation of the observed differences in the corrosion behaviour of the naturally and artificially aged AA2024 alloy is proposed. Different corrosion behaviour of the alloy after different test periods is also explained.  相似文献   

2.
Studies for Al-alloys normally employ specimens subject to a fixed solution heat treatment (SHT), and hence the specific role of solutionising is overlooked. It is revealed that SHT has a major role in corrosion of AA7150 as judged by electrochemical, microscopic and profilometry studies. SHT dictates the constituent particle type and population remaining in the alloy for subsequent processing, and is thus not only a principal factor in corrosion, but a factor that can be engineered in developing more damage tolerant AA7150. Effect of an optimised SHT minimising the residual MgZn2 and Al2MgCu content on corrosion resistance is demonstrated.  相似文献   

3.
The effect of the metal substrate microstructure on filiform corrosion (FFC) susceptibility was investigated for super purity based model alloys with compositions based on the specifications of AA3005. Variations in alloying levels of the elements iron, silicon and copper were investigated. Alloys with high silicon content were more susceptible to FFC than alloys with low silicon content. The iron content, at the levels investigated, did not strongly affect FFC properties. The apparent detrimental effect of a high silicon content is attributed to the influence of silicon on secondary intermetallic particle precipitation. Given the same thermo-mechanical treatment, alloys with high silicon content underwent more extensive secondary precipitation of manganese containing intermetallic particles than those alloys with a low silicon content. The resulting microstructure is characterised by a higher density of finely dispersed intermetallic particles and a lower content of manganese in the adjacent supersaturated solid solution. These conditions provide a large number of potential corrosion initiation sites on the surface and also enhance microgalvanic coupling between intermetallic particles and the surrounding aluminium rich matrix, thus promoting the propagation of filamental corrosion attacks. Additions of copper had a detrimental effect on the FFC resistance. The role of copper in promoting FFC is attributed to preferential dissolution phenomena during the corrosion process, whereby copper is locally enriched on the corroding surface. This copper enrichment provides additional area for cathodic reaction, thus enhancing the corrosion process.  相似文献   

4.
分析自然时效和人工时效AA2024铝合金在0.5 mol/dm3 NaCl溶液中的腐蚀行为,溶液中分别加入环境友好的缓蚀剂:10 mmol/dm3 CeCl3,10 mmol/dm3 BTA和5 mmol/dm3 CeCl3+5 mmol/dm3 BTA混合缓蚀剂。本研究的目的是确定混合缓蚀剂的协同效应水平,并解释这种效应的本质。采用电化学阻抗谱(EIS)研究缓蚀剂层的腐蚀性能,通过动电位极化试验研究其抑制点蚀形成和点蚀生长的能力。扫描电子显微镜(SEM/EDS)的结果表明,自然时效铝合金中形成的点蚀尺寸小于人工时效合金中形成的点蚀尺寸。在自然时效合金测试的96 h内以及在人工时效合金测试的后期,均观察到混合缓蚀剂对腐蚀性能的协同效应,但没有发现混合缓蚀剂对点蚀形成和点蚀生长的协同效应。  相似文献   

5.
6005A铝合金搅拌摩擦焊接头的晶间腐蚀行为   总被引:1,自引:2,他引:1       下载免费PDF全文
董鹏  孙大千  李洪梅  王冰 《焊接学报》2014,35(5):105-108
对6005A铝合金搅拌摩擦焊接头的晶间腐蚀行为进行了研究.结果表明,母材的晶间腐蚀倾向最大,热影响区(HAZ)次之,焊核区(NZ)和热力影响区(TMAZ)的晶间腐蚀倾向最低.结合场发射扫描电镜、高分辨透射电镜分析解释了接头不同区域的腐蚀行为:母材的晶间腐蚀是两组微电池效应的结果,即晶界析出相/沉淀无析出带(PFZ)和铝基体/PFZ;HAZ内晶界析出相的数量的减少、间距的变大及晶内Q'相的析出显著改善了该区的晶间腐蚀性,但晶内Q'相的析出也引起了点蚀的发生;NZ和TMAZ内绝大部分的合金元素固溶于基体,抑制了晶间腐蚀的发生.  相似文献   

6.
The effect of various heat treatments on the corrosion behaviour of 319 T1 cast aluminium alloy was investigated. From this alloy, specimens were heat treated in T5, T6 and two steps solution heat treatment T6 conditions and afterwards were subjected to electrochemical corrosion in a 0.1 M NaCl solution (pH = 12). From the above treatments, T5 heat treatment did not improve the corrosion resistance of the as‐received alloy in contrast to T6 heat treatment which improved the corrosion resistance of the same alloy. However, two steps solutionizing T6 treatment showed the best corrosion resistance of the aluminium alloy.  相似文献   

7.
8.
We systematically studied the passivation process of 6082 aluminium alloy under the bending stress situation by combining electrochemical measurement techniques with three-point bending stress fixture designed by our lab, and then examined the microstructures of corroded specimens to analyze electrochemical corrosion mechanism in 1.5% NaCl solution. The results show that secondary Mg2Si phase acts as the anodic electrode, leading to the self-corrosion of Mg2Si phase. As a result, the spots of self-corroded Mg2Si phase within grains act as initial pitting corrosion site, combined with tiny, massive precipitated Mg2Si particles at the grain boundaries and bending stress, leading to the failure of surface of the 6082 aluminium alloy. The corrosion current density increases from 3.422 × 10−7 to 13.77 × 10−7 A/cm2 when bending stress level was increased from 0% up to 100% of yield stress. Passive film formation process occurred between polarization potential area of −1.05 and −0.65 V. Sectional microstructural investigations show that the corrosion starts penetrating vertically into the material before it develops corrosion paths extending parallel to the surface, leading to massive stress-induced corrosion cracks. The maximum corrosion depth increases from ∼24 μm on specimen without any stress applied to 85 μm when bending stress of 100% yield strength is applied.  相似文献   

9.
The heat affected zone (HAZ) on the metal–inert gas (MIG) welding joint of 7N01 aluminium alloy was repaired by multipass narrow gap laser welding. The YX direction precracked three‐point bending sample was used in the alternate immersion test. The morphology of specimen surfaces demonstrated that the exfoliation corrosion in the HAZ after laser repair (HAZa) was more serious than that before laser repair (HAZb). The electrochemical impedance spectroscopy after different immersion corrosion time indicated that the HAZa and HAZb had similar corrosion potentials. However, the pitting corrosion resistance of HAZa was lower than that of HAZb at the beginning of exfoliation corrosion. The stress corrosion crack (SCC) of 7N01P‐T4 aluminium alloy displayed a multicrack source and an intergranular crack propagated along the rolling grain boundary under the test condition. An unusual method was taken to measure the length of SCC. The results showed that laser repairing did not weaken the stress corrosion resistance of the original joint.  相似文献   

10.
Mixed rare earth organophosphates have been investigated as potential corrosion inhibitors for AA2024‐T3 with the aim of replacing chromate‐based technologies. Cerium diphenyl phosphate (Ce(dpp)3) and mischmetal diphenyl phosphate (Mm(dpp)3) were added to epoxy coatings applied to AA2024‐T3 panels and they were effective in reducing the amount and rate of filiform corrosion in high humidity conditions. Ce(dpp)3 was the most effective and characterisation of the coating formulations showed approximately a factor of 5 reduction in both the number of corrosion filaments initiated as well as the length of these. Mm(dpp)3 appeared to reduce the corrosion growth rate by a factor of 2 although it was the more effective inhibitor in solution studies. Spectroscopic characterisation of the coatings indicated that the cerium based inhibitor may disrupt network formation in the epoxy thus resulting in a coating that absorbed more water and allowed greater solubilisation of the corrosion inhibiting compound.  相似文献   

11.
ABSTRACT

The present work is concerned with the corrosion resistance of AA6061 aluminium alloys with tantalum films in hydrochloric acid- and chloride-containing solutions. The tantalum films were produced by magnetron sputtering at different sputtering times (50 and 120 min). The films’ morphologies were observed by metallographic microscope and scanning electron microscope with energy dispersion spectrum. It is shown in this paper that with longer sputtering time, the film’s thickness increased, but it became less dense. The corrosion behaviour was characterised by potentiodynamic polarisation, scanning electrochemical microscopy analysis and an immersion experiment. These investigations revealed that the corrosion resistance of AA6061 aluminium alloy in chloride ions medium and hydrochloric acid was significantly improved after deposition of a tantalum film. Specifically, samples deposited for 50 min exhibited the best corrosion resistance in hydrochloric acid, while samples deposited for 120 min showed best corrosion resistance in sodium chloride solution.  相似文献   

12.
The aim of this investigation is to evaluate the influence on fatigue behaviour of the finishing of the bulge in a welded aluminium–zinc–magnesium alloy AA7020. It was determined that total or partial elimination of the bulge has very little influence on its behaviour, giving a very similar result on both cases, where one is better than the other by only 3%.  相似文献   

13.
采用常温拉伸性能测试、应力腐蚀性能测试和盐雾腐蚀性能测试方法分别对双级时效态7A41铝合金的力学性能及耐蚀性能进行了测试。采用光学显微镜、扫描电镜(SEM)和透射电镜(TEM)对合金的显微组织、拉伸断口微观形貌进行了表征。结果表明,T6状态下合金的抗拉强度、屈服强度和伸长率分别为505 MPa、474 MPa和16.3%。耐应力腐蚀性能优异,应力腐蚀敏感系数为3.98%,合金的盐雾腐蚀速度为0.0914 mm/y。TEM观察分析表明,Tb态7A41铝合金晶内均匀弥散地分布着纳米级析出相,晶界上分布着大量的非连续析出相,析出相尺寸为20~50 nm,非连续析出相有效地阻碍了合金晶间腐蚀的路径,良好的组织特征保证了合金的综合性能。  相似文献   

14.
镁合金丝状腐蚀研究进展   总被引:1,自引:0,他引:1  
王宏新  于锦  宋影伟 《表面技术》2016,45(12):36-42
目的镁合金具有许多独特的性能及光明的应用前景,但耐蚀性差制约了其发展。丝状腐蚀作为一种常见的局部腐蚀形态,其破坏性非常大。结合国内外丝状腐蚀的研究成果,从丝状腐蚀产生的原因及发展过程,重点叙述了镁合金丝状腐蚀的特点、腐蚀机理,以及腐蚀环境和微观结构对镁合金丝状腐蚀发展的影响规律。指出了镁合金丝状腐蚀阴极发生的是析氢反应,且腐蚀丝具有折射生长、相随生长等特点;腐蚀介质会优先吸附在自然形成氧化膜的缺陷处,导致腐蚀萌生;第二相、晶粒尺寸和表面处理等微观结构对腐蚀丝的发展有重要影响。同时总结了微区原位技术在镁合金丝状腐蚀研究中的应用,并指出了微区原位技术和传统的腐蚀研究方法相结合是揭示镁合金丝状腐蚀机制的有效途径。最后,对未来镁合金丝状腐蚀机理的研究进行了分析和展望。  相似文献   

15.
The corrosion resistance of aluminium surfaces is closely linked to the surface state after a grinding process. For years, iron-containing abrasive materials were suspected to lead to increased corrosion susceptibility after processing of aluminium surfaces. To prove a possible correlation between the iron content of an abrasive and the corrosion behaviour of aluminium components, scientific investigations and experimentally practical corrosion tests are necessary. For the current investigation, specimens of a technical Al-Si alloy from the same batch were used. The test specimens were mechanically ground with various resin-bonded model abrasives containing different iron contents. The performed corrosion tests did not reveal a negative influence of the different iron-containing abrasives on the corrosion behaviour of the Al–Si alloy. However, the most sensitive measuring method (electrochemical noise) showed differences in the surface activity depending on the type of abrasive.  相似文献   

16.
LC4铝合金的土壤盐浓差宏电池腐蚀   总被引:1,自引:0,他引:1  
利用湿砂土作为模拟土壤 ,通过失重法及电化学方法相结合 ,研究了盐浓差 (2 .0 %Cl- 及 0 .0 2 %Cl- )对LC4铝合金的宏电池腐蚀的影响规律。结果表明 :位于高盐土壤中的试样为宏电池阳极而加速腐蚀 ,宏电池作用强度达到 4.2倍。  相似文献   

17.
固溶后预析出对7A55铝合金力学及腐蚀性能的影响   总被引:2,自引:0,他引:2  
采用硬度测试、电导率测试及透射电镜观察,研究固溶后降温至440℃预析出处理时间对7A55铝合金板材力学和腐蚀性能的影响。结果表明:随预析出处理时间的延长,基体析出相逐渐增多且长大,导致合金时效后硬度和强度先提高而后降低;晶界析出相逐渐长大,晶界无沉淀析出带宽化,晶界相不连续性先提高而后降低,导致合金抗晶问腐蚀和剥落腐蚀性能也先升高而后降低。  相似文献   

18.
The pitting corrosion behavior of 7150 aluminum alloy was studied by electrochemical impedance spectroscopy (EIS) in the sodium chloride and hydrochloric acid solution. Based on EIS features and corrosion morphologies as well as corrosion potential, the process of pitting corrosion could be clearly divided into four stages: at the first stage, the Nyquist diagram was composed of two overlapping capacitive loops at the high‐medial frequency and one inductive loop at the low frequency. At the second stage (metastable pits developing stage), there existed one small capacitive loop at the high frequency and one big capacitive loop at the medial frequency. At the third stage (stable pits developing stage), two time constants were more clearly distinguished, corresponding to two obvious capacitive loops. At the fourth stage, there appeared one capacitive loop, attributing to uniform corrosion. An equivalent circuit was designed to fit EIS, and the experimental results and the fitted results had good correspondence.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号