首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystallization behavior and mechanical properties of CaO-Al2O3-SiO2 (CAS) system glass-ceramics with addition of Y2O3 were investigated. The optimal sintering temperatures of all heat-treated glasses were altered and the crystallization was accelerated with Y2O3 addition, and only wollastonite as a main crystalline phase was precipitated. The volume fraction of crystalline phase and density were increased with Y2O3 addition. The results suggest that the CAS glass-ceramics would get the lowest sintering temperature and optimal microstructure with the addition of Y2O3 by 3.25 %. The bending strength has a maximum due to the oriented and interlocked wollastonite crystal, which causes crack divert or blunts to limit the further development of the flaw size and increases the surface energy of fracture.  相似文献   

2.
Homogeneous α-Al2O3 platelets were synthesized by introducing AlF3 to alumina precursor.The effects of AlF3 additive on the phase transformation and morphology of the prepared α-Al2O3 platelets were investigated.The results show that a single phase of α-Al2O3 with an average particle size of 8μm can be obtained at 900℃ with 2% AlF3 additive.The transformation temperature decreasing IS attributed to introduction of Al3 vacancy and to the formation of intermediate compound of AlOF,which is considered to accelerate the mass transportation from transitional Al2O3 to α-Al2O3.AlF3 concentration and hydrothermal temperature can also affect the morphology of α-Al2O3.When hydrothermal temperature is 120℃,the morphology of α-Al2O3 transforms from irregular to flat hexangular platelet with increasing AlF3 concentration.As hydrothermal temperature increases,the morphology of α-Al2O3 with 2% AlF3 additive changes from polyhedron to hexangular platelet and then to vermicular.  相似文献   

3.
Homogeneous α-Al2O3 platelets were synthesized by introducing AlF3 to alumina precursor.The effects of AlF3 additive on the phase transformation and morphology of the prepared α-Al2O3 platelets were investigated.The results show that a single phase of α-Al2O3 with an average particle size of 8μm can be obtained at 900℃ with 2% AlF3 additive.The transformation temperature decreasing IS attributed to introduction of Al3 vacancy and to the formation of intermediate compound of AlOF,which is considered to accelerate the mass transportation from transitional Al2O3 to α-Al2O3.AlF3 concentration and hydrothermal temperature can also affect the morphology of α-Al2O3.When hydrothermal temperature is 120℃,the morphology of α-Al2O3 transforms from irregular to flat hexangular platelet with increasing AlF3 concentration.As hydrothermal temperature increases,the morphology of α-Al2O3 with 2% AlF3 additive changes from polyhedron to hexangular platelet and then to vermicular.  相似文献   

4.
Eu-doped GaOOH nanoparticles with size of 5-8 nm were prepared by hydrothermal method using sodium dodecylbenzene sulfonate (SDBS) as surfactant. Eu-doped α-Ga2O3 and β-Ga2O3 were further fabricated by annealing GaOOH:Eu and then characterized by X-ray diffraction(XRD), transmission electron microscopy (TEM) and photoluminescence (PL). The TEM results show that monodisperse Eu3+-doped GaOOH nanoparticles form and then transform into Eu3+-doped α-Ga2O3 and β-Ga2O3 through annealing the GaOOH:Eu nanoparticles at 600 and 900 °C, respectively. PL studies indicate that GaOOH:Eu has the highest intensity at 618 nm. Luminescence quenching is observed at higher Eu3+ concentration in all samples.  相似文献   

5.
Al2O3/TiAl composites were fabricated by PAXD (pressure-assisted exothermic dispersion) method. The effects of Nb205 content on the microstructure and mechanical properties of the composites were investigated. The results show that the ultimate phases of the composite consist of TiAl, Ti3Al, Al2O3 and a small amount of NbA13. SEM reveals that a submicron γ+(α2/γ) dual phases structure can be presented after sintered at 1 200 ℃, Furthermore, with the increase of Nb205 content, the ratio of TiAl to Ti3Al phase decreases correspondingly, the grains of the corflposites are remarkably refined, and the produced Al2O3 particles are uniformly dispersed. When 6% Nb205 is added, the composite has the best comprehensive properties. It exhibits a Vickers hardness of 4.77 GPa and a bending strength of 642 MPa. Grain-refinement and dispersion-strengthening are the main strengthening mechanisms.  相似文献   

6.
Ni/Al2O3 composites were prepared by hot pressing approach. The relationship between their microstructure, mechanical, dielectric and magnetic properties with Ni particle content was studied. By increasing the amount of metal in the composite, the relative density and the bending strength decrease gradually. The possible reason is that non-wetting between Ni and alumina in the preparation results in weak adhesion of the Ni/A; interface. For the composites, the maximum fracture toughness is 6.4 MPa. m^1/2, which is about 25% higher than that of pure alumina ceramic. The increase in toughness of the Ni/Al2O3 composites is due to the deformation of nickel particles. The complex dielectric constant measurements indicate that the real part and the imaginary part increase greatly with the Ni content in the frequency range of 8.2-12.4 GHz. The real part and the imaginary part of complex permeability of the composites also increase with increasing Ni content.  相似文献   

7.
Sequential oxidation experiments at 1200°C and 1500°C using16O and >95%18O-enriched environments were conducted on undoped and Y- and Zr-doped -NiAl and FeCrAl alloys. After oxidation, samples were analyzed by SIMS sputter depth profiling. At 1200°C, a clear pattern was established where the undoped -Al2O3 was found to grow by the simultaneous transport of both Al and O. Zr-doped -Al2O3 was found to grow mainly by the inward transport of oxygen. The profiles in all cases indicate O diffusion primarily by shortcircuit pathways. Results at 1500°C (only on -NiAl) indicated a similar behavior but were less conclusive. Y and Zr were found to segregate to the oxide grain boundaries at 1200°C and 1500°C. The segregation of these dopants is believed to impede the cation transport in the -Al2O3 scale and thereby change the oxidation mechanism.  相似文献   

8.
《Acta Materialia》2001,49(16):3117-3127
Two major problems exist in the processing of AlN. The first is the difficulty in achieving full densification even at relatively high sintering temperatures. The second is the formation of the spinel phase, AlON. Pure AlN sintered at temperatures up to 2000°C have produced no more than 90–93% densification in the former case, while AlN rich ternary systems (AlN–Al2O3-sintering agent) have resulted in the detrimental formation of AlON well before full densification can occur. This paper reports on the phase reaction and sintering behavior of a ternary Al2O3–AlN–Y2O3 system near the critical temperature range of 1600–1700°C, in a carbo-thermal reduction furnace in a fully nitrogen environment. Full densification (>98%) for AlN without the formation of AlON was achieved by sintering an initial Al2O3 rich ternary system (Al2O3–20wt%AlN–5wt% Y2O3) at a relatively low temperature of 1680°C. Formation of the AlON was delayed until 1700°C, at which a stoichiometric γ-AlON (Al3O3N) with spinel type structure was obtained. Thermal conductivity values for a sintered substrate obtained with low oxygen content within the AlN matrix reached 125 W m−1 K−1.  相似文献   

9.
The friction and wear properties of ZrO2 and ALO3 cooperatively toughened mullite composites-mullite/ZrO2/Al2O3(MZA) were studied. The tribological tests were performed in a line-reciprocating tribometer using a GCr15 steel ball on a MZA disk under different dry reciprocating sliding conditions at room temperature. A wide range of normal loads and sliding speeds were chosen to investigate the relationship between the wear mechanisms of MZA and the testing conditions. The wear mechanism diagram of MZA is constructed, it contains two typical regions. It suggests that the wear mechanisms of MZA in each of the region change from one to another depending on the wear conditions. In the mild wear region, the wear rate of MZA is 10^-6 mm^3/m, and the wear mechanism of MZA is plastic deformation accompanied by a little micro-cracking. In the severe wear region, the wear rate of MZA is 10 5 mm^3/m and the dominant wear mechanism in this region is brittle fracture.  相似文献   

10.
Al2O3 nanoparticles were prepared by polyethylene glycol octylphenyl ether(Triton X-100)/n-butyl alcohol/cyclohexane/ water W/O reverse microemulsion. The proper calcination temperature was determined at 1 150 ℃ by thermal analysis of the precursor products. The structures and morphologies of Al2O3 nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and UV-Vis spectra. The influences of mole ratio of water to surfactant on the morphologies and the sizes of the Al2O3 nanoparticles were studied. With the increase of surfactant content, the particles size becomes larger. The agglomeration of nanoparticles was solved successfully. And the formation mechanisms of Al2O3 nanoparticles in the reverse microemulsion were also discussed.  相似文献   

11.
12.
A novel technique combining electrophoretic deposition (EPD) and reaction bonding process (RBP) is developed to fabricate thick ZrO2/Al2O3 composite coatings. Mixed organic solvents are used here to make suspension containing yttria stablised zirconia (YSZ) and aluminium (Al). The results show that densely packed green form coatings are deposited using a mixture of ethanol and acetylacetone as suspension medium and ball milling for 48 hours. On subsequent heat treatment, melting and oxidation of aluminium in the green forms promote densification during sintering. By these means,thick, uniform and crack-free ZrO2/Al2O3 composite coatings have been fabricated on metal substrate.  相似文献   

13.
《Scripta materialia》2003,48(4):437-441
Low-temperature-sinterable high purity α-alumina powder was mixed with Zr(OH)4 gel synthesized by a precipitation method. The resulting gel mixture was calcined at 600 °C for 2 h. The Al2O3–15wt.%ZrO2 composites were sintered for 2 h in air in the temperature range between 1350 and 1500 °C. Nearly full densification and the maximum bending strength of 932 MPa were achieved for the Al2O3–15wt.%ZrO2 composites sintered at 1425 °C, whereas the highest fracture toughness of 8.5 MPa m1/2 was obtained after sintering at 1475 °C.  相似文献   

14.
Small amounts of nanocrystalline Al2O3 particles were doped in WC-Co nanocrystalline powders to study their reinforcing effects, and spark plasma sintering technique was used to fabricate the WC-Co-Al2O3 nanocomposites. Experimental results show that the use of Al2O3 nanoparticles as dispersions to reinforce WC-Co composites can increase the hardness, especially the transverse rupture strength of the WC-Co hardmetal. With addition of 0.5%(mass fraction) Al2O3 nanoparticles, the spark plasma sintered WC-TCo-0. 5Al2O3 nanocomposites exhibit hardness of 21.22 GPa and transverse rupture strength of 3 548 MPa. The fracture surface of the WC-TCo-0.5Al2O3 nanocomposites mainly fracture with transcrystalline rupture mode. The reinforcing mechanism is maybe related to the hindrance effect of microcracks propagation and the pinning effect for the dislocations movement, as well as the residual compressive strength due to the Al2O3 nanoparticles doped.  相似文献   

15.
1 Introduction Currently, many synthetic materials, such as medical metals (titanium and its alloys), Bioglass?, CaP bioceramics, alumina, and some biodegradable polymers and so on, have been developed for hard tissue repair and replacement[1,2]. Among th…  相似文献   

16.
Structure and electrochemical properties of LiMn2O4   总被引:1,自引:0,他引:1  
LiMn2O4, a cathode material of lithium ion battery, was prepared by the citric acid complexing method using lithium acetate and manganese acetate as raw materials. The type of atom location confused degree, the confused degree and judgement method in LiMn2O4 were analyzed. The effect of sintering temperature on structure and electrochemical properties of LiMn2O4 was also investigated. The results show that the atom location confused degree increases with the decrease of the X-ray diffraction peak intensity ratio of LiMn2O4, Ⅰ111/Ⅰ311. The type of atom location confused degree depends on the variation tendency of Ⅰ111/Ⅰ311 and Ⅰ311/Ⅰ400 value. If the variation tendency is the same, it belongs to the 16c type location confusion, however, if the variation tendency is contrary, it belongs to the anti-spinel type location confusion. When the sintering temperature is low, it is apt to produce the anti-spinel location confusion in LiMn2O4. With the increase of sintering temperature, the confused degree with the anti-spinel type gradually reduces, however, the confused degree with 16c type increases to some extent. When the atom location confusion with the anti-spinel type appears in LiMn2O4, both the initial discharging capacity and cycling properties of LiMn2O4 reduce. However, the atom location confusion with 16c type does not affect the charge and discharge properties of LiMn2O4.  相似文献   

17.
A sub-microstructure titanium aluminide alloy/Al2O3 (3A) composite was obtained by crystallization of the amorphous powders, which were prepared by mechanical alloying (MA) in a planetary ball milling system using Ti-AI-TiO2 as raw materials. The experimental results show that, when the milling time increases up to 30 h, the hep Ti(Al) supersaturated solid solution disappears, only amorphous phase is left. The compact samples were synthesized by hot-press to 1 200 ℃ with the amorphous as a precursor; the final phases of the matrix and strengthened phase are y-TiAl and Al2O3. The phases come from in situ crystallization and transformation. The samples, fabricated from the amorphous phase by hot press sintering, have high bending strength and fracture toughness.  相似文献   

18.
The reactivity of Na2B4O7·5H2O and Na2B4O7 in non-aqueous HCl-CH3OH solvent system was investigated. The effects of H2O, CH3OH/B mole ratio and reaction time on the reaction at room temperature were examined. Experimental results show that when Na2B4O7·5H2O and Na2B4O7 are the reactants, the dissolved B2O3 contents are observed to be 98.2% and 99%, respectively, in 5 min at the CH3OH/B mole ratio of 4. The decrease of water in the reaction medium was observed to increase the crystallization of NaCl in the order of Na2B4O72B4O7·5H2O. It was also observed that the boron solution obtained after the reaction could be hydrolyzed by the addition of H3BO3. The results show that HCl-CH3OH system is a more effective solvent compared to H2SO4-CH3OH both in the reactivity and the shortened reaction time.  相似文献   

19.
Synthesis and characterization of CoFe2O4 nanoparticles   总被引:6,自引:2,他引:4  
The reverse microemulsion composition consisting of 37.0% cyclohexane, 26.0% surfactant (TX-10 and AEO9), 13.0% n-pentanol and 24.0% aqueous phase was investigated and chosen for the preparation of cobalt ferrite nanoparticles. Then silicon dioxide was coated onto the surface of the magnetite nanoparticles. The two kinds of nanoparticles were characterized by means of X-ray diffractometry(XRD), scanning electron microscopy (SEM), infrared spectroscopy (IR), and energy dispersion spectrometry (SEM-EDS). The SEM results indicate that both nanoparticles have narrow size distribution, less agglomeration and are in the size range of 10 -60 nm. XRD patterns show that there is not any peak detected except for the peaks of CoFe2O4, and imply that the coated silicon dioxide is amorphous. IR absorption spectra of the samples show the characteristic bands of Si—O—Si group and Fe—O group. SEM-EDS indicates that the molar ratio of Fe to Si is 96.11 : 3.89. These results prove that a thin film of SiO2 is coated on the surface of the magnetite nanoparticles. And the characterization of cobalt ferrite nanoparticles prepared by conventional precipitation method are compared.  相似文献   

20.
Synthesis and character of spinel LiMn2O4   总被引:2,自引:1,他引:2  
1 INTRODUCTIONTheincreasingconcernsonportableelectricele mentsdemandmoreandmoreelectrochemicalener gy .Countriesallovertheworldhaveputlargequan tityofmanuallabors ,materialresourcesandfinancialresourcesonbasicresearchanddevelopmentonnewtypeofrechargeablebatteries[1,2 ] .However ,thisnewtypeofbatteriesisbasedonstudyinganddevel opingperfectperformanceofmaterials ,especiallyonmaterialsofthelithiumbatteries.LixMn2 O4 cathodematerialshavebeenwidelystudiedoverthelasttwodecadesasapotentialcand…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号