首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lei  Cong  Zhu  Xiaofeng 《Multimedia Tools and Applications》2018,77(22):29605-29622
Multimedia Tools and Applications - Feature self-representation has become the backbone of unsupervised feature selection, since it is almost insensitive to noise data. However, feature selection...  相似文献   

2.
Feature selection is one of the most important machine learning procedure, and it has been successfully applied to make a preprocessing before using classification and clustering methods. High-dimensional features often appear in big data, and it’s characters block data processing. So spectral feature selection algorithms have been increasing attention by researchers. However, most feature selection methods, they consider these tasks as two steps, learn similarity matrix from original feature space (may be include redundancy for all features), and then conduct data clustering. Due to these limitations, they do not get good performance on classification and clustering tasks in big data processing applications. To address this problem, we propose an Unsupervised Feature Selection method with graph learning framework, which can reduce the redundancy features influence and utilize a low-rank constraint on the weight matrix simultaneously. More importantly, we design a new objective function to handle this problem. We evaluate our approach by six benchmark datasets. And all empirical classification results show that our new approach outperforms state-of-the-art feature selection approaches.  相似文献   

3.

In this paper, we propose a new feature selection method called kernel fisher discriminant analysis and regression learning based algorithm for unsupervised feature selection. The existing feature selection methods are based on either manifold learning or discriminative techniques, each of which has some shortcomings. Although some studies show the advantages of two-steps method benefiting from both manifold learning and discriminative techniques, a joint formulation has been shown to be more efficient. To do so, we construct a global discriminant objective term of a clustering framework based on the kernel method. We add another term of regression learning into the objective function, which can impose the optimization to select a low-dimensional representation of the original dataset. We use L2,1-norm of the features to impose a sparse structure upon features, which can result in more discriminative features. We propose an algorithm to solve the optimization problem introduced in this paper. We further discuss convergence, parameter sensitivity, computational complexity, as well as the clustering and classification accuracy of the proposed algorithm. In order to demonstrate the effectiveness of the proposed algorithm, we perform a set of experiments with different available datasets. The results obtained by the proposed algorithm are compared against the state-of-the-art algorithms. These results show that our method outperforms the existing state-of-the-art methods in many cases on different datasets, but the improved performance comes with the cost of increased time complexity.

  相似文献   

4.
Elghazel  Haytham  Aussem  Alex 《Machine Learning》2015,98(1-2):157-180
Machine Learning - In this paper, we show that the way internal estimates are used to measure variable importance in Random Forests are also applicable to feature selection in unsupervised...  相似文献   

5.
In this paper we present a new method for Joint Feature Selection and Classifier Learning using a sparse Bayesian approach. These tasks are performed by optimizing a global loss function that includes a term associated with the empirical loss and another one representing a feature selection and regularization constraint on the parameters. To minimize this function we use a recently proposed technique, the Boosted Lasso algorithm, that follows the regularization path of the empirical risk associated with our loss function. We develop the algorithm for a well known non-parametrical classification method, the relevance vector machine, and perform experiments using a synthetic data set and three databases from the UCI Machine Learning Repository. The results show that our method is able to select the relevant features, increasing in some cases the classification accuracy when feature selection is performed.  相似文献   

6.
利用局部线性嵌入(LLE)算法中获得局部邻域之间的重构关系与使用最小角回归方法解决L1归一化问题都使用回归方法,针对在通过映射获得低维嵌入空间与通过特征选择获得低维空间上有着一致的思想,提出一种能保持局部重构关系的无监督谱特征选择方法.该方法利用最小二乘法计算样本的邻域重构系数,并用这些系数表示样本之间的关系,通过解决稀疏特征值问题获得能够保持样本间关系的低维嵌入空间,最后通过解决L1归一化问题实现自动特征选择.通过在四个不同数据集上的聚类实验结果证明,该方法能更准确地评价每个特征的重要性,能自动适应不同的数据集,受参数影响更小,可以明显提升聚类效果.  相似文献   

7.
为了提高无监督嵌入学习对图像特征的判别能力,提出一种基于深度聚类的无监督学习方法。通过对图像的嵌入特征进行聚类,获得图像之间的伪类别信息,然后最小化聚类损失来优化网络模型,使得模型能够学习到图像的高判别性特征。在三个标准数据集上的图像检索性能表明了该方法的有效性,并且优于目前大多数方法。  相似文献   

8.
9.
Xue  Xizhe  Li  Ying 《Multimedia Tools and Applications》2019,78(15):21187-21204
Multimedia Tools and Applications - Particle filters have been proven very successful for non-linear and non-Gaussian estimation problems and extensively used in object tracking. However, high...  相似文献   

10.
11.
This paper describes a novel feature selection algorithm for unsupervised clustering, that combines the clustering ensembles method and the population based incremental learning algorithm. The main idea of the proposed unsupervised feature selection algorithm is to search for a subset of all features such that the clustering algorithm trained on this feature subset can achieve the most similar clustering solution to the one obtained by an ensemble learning algorithm. In particular, a clustering solution is firstly achieved by a clustering ensembles method, then the population based incremental learning algorithm is adopted to find the feature subset that best fits the obtained clustering solution. One advantage of the proposed unsupervised feature selection algorithm is that it is dimensionality-unbiased. In addition, the proposed unsupervised feature selection algorithm leverages the consensus across multiple clustering solutions. Experimental results on several real data sets demonstrate that the proposed unsupervised feature selection algorithm is often able to obtain a better feature subset when compared with other existing unsupervised feature selection algorithms.  相似文献   

12.
This paper studies a new feature selection method for data classification that efficiently combines the discriminative capability of features with the ridge regression model. It first sets up the global structure of training data with the linear discriminant analysis that assists in identifying the discriminative features. And then, the ridge regression model is employed to assess the feature representation and the discrimination information, so as to obtain the representative coefficient matrix. The importance of features can be calculated with this representative coefficient matrix. Finally, the new subset of selected features is applied to a linear Support Vector Machine for data classification. To validate the efficiency, sets of experiments are conducted with twenty benchmark datasets. The experimental results show that the proposed approach performs much better than the state-of-the-art feature selection algorithms in terms of the evaluating indicator of classification. And the proposed feature selection algorithm possesses a competitive performance compared with existing feature selection algorithms with regard to the computational cost.  相似文献   

13.
Zhang  Leyuan  Li  Yangding  Zhang  Jilian  Li  Pengqing  Li  Jiaye 《Multimedia Tools and Applications》2019,78(23):33319-33337

The characteristics of non-linear, low-rank, and feature redundancy often appear in high-dimensional data, which have great trouble for further research. Therefore, a low-rank unsupervised feature selection algorithm based on kernel function is proposed. Firstly, each feature is projected into the high-dimensional kernel space by the kernel function to solve the problem of linear inseparability in the low-dimensional space. At the same time, the self-expression form is introduced into the deviation term and the coefficient matrix is processed with low rank and sparsity. Finally, the sparse regularization factor of the coefficient vector of the kernel matrix is introduced to implement feature selection. In this algorithm, kernel matrix is used to solve linear inseparability, low rank constraints to consider the global information of the data, and self-representation form determines the importance of features. Experiments show that comparing with other algorithms, the classification after feature selection using this algorithm can achieve good results.

  相似文献   

14.
Multimedia Tools and Applications - Transfer learning is proposed to solve a general problem in practical applications faced by traditional machine learning methods, that is, the training and test...  相似文献   

15.
稀疏自编码和Softmax回归的快速高效特征学习   总被引:1,自引:0,他引:1  
针对特征学习效果与时间平衡问题,提出了一种快速高效的特征学习方法.将稀疏自编码和Softmax回归组合成一个新的特征提取模型,在提取原始图像潜在信息的基础上,利用多分类器返回值可以反映输入信息的相似程度的特点,快速高效的学习利于分类的特征向量.鉴于标签信息已知,该算法在图像分类效果上明显优于几种典型的特征学习方法.为了使所提算法具有更好的泛化能力,回归模型的损失函数中加入了L2范数防止过拟合,同时,采用随机梯度下降的方法得到模型的最优参数.在4个标准数据集上的测试结果表明该算法是有效可行的.  相似文献   

16.
Every day, a huge amount of video data is generated worldwide and processing this kind of data requires powerful resources in terms of time, manpower, and hardware. Therefore, to help quickly understand the content of video data, video summarization methods have been proposed. Recently, sparse formulation-based methods have been found to be able to summarize a large amount of video compared to other methods. In this paper, we propose a new method in which video summarization is performed as training and selection sparse dictionary problem simultaneously. It is shown that the proposed method is able to improve the summarization of a large amount of video data compared to other methods. Finally, the performance of the proposed method is compared to state-of-the-art methods using standard data sets, in which the key frames are manually tagged. The obtained results demonstrate that the proposed method improves video summarization compared to other methods.  相似文献   

17.
Multimedia Tools and Applications - In this paper, we present a novel algorithm called robust sparse tensor subspace learning (RSTSL) for 3D human pose regression, and it further extends the latest...  相似文献   

18.
Pattern Analysis and Applications - Feature selection techniques have become an apparent need in many bioinformatics applications, especially when there exist a huge number of features. For...  相似文献   

19.
He  Jinrong  Bi  Yingzhou  Ding  Lixin  Li  Zhaokui  Wang  Shenwen 《Neural computing & applications》2017,28(10):3047-3059

In applications of algorithms, feature selection has got much attention of researchers, due to its ability to overcome the curse of dimensionality, reduce computational costs, increase the performance of the subsequent classification algorithm and output the results with better interpretability. To remove the redundant and noisy features from original feature set, we define local density and discriminant distance for each feature vector, wherein local density is used for measuring the representative ability of each feature vector, and discriminant distance is used for measuring the redundancy and similarity between features. Based on the above two quantities, the decision graph score is proposed as the evaluation criterion of unsupervised feature selection. The method is intuitive and simple, and its performances are evaluated in the data classification experiments. From statistical tests on the averaged classification accuracies over 16 real-life dataset, it is observed that the proposed method obtains better or comparable ability of discriminant feature selection in 98% of the cases, compared with the state-of-the-art methods.

  相似文献   

20.
Feature selection is an important step for large-scale image data analysis, which has been proved to be difficult due to large size in both dimensions and samples. Feature selection firstly eliminates redundant and irrelevant features and then chooses a subset of features that performs as efficient as the complete set. Generally, supervised feature selection yields better performance than unsupervised feature selection because of the utilization of labeled information. However, labeled data samples are always expensive to obtain, which constraints the performance of supervised feature selection, especially for the large web image datasets. In this paper, we propose a semi-supervised feature selection algorithm that is based on a hierarchical regression model. Our contribution can be highlighted as: (1) Our algorithm utilizes a statistical approach to exploit both labeled and unlabeled data, which preserves the manifold structure of each feature type. (2) The predicted label matrix of the training data and the feature selection matrix are learned simultaneously, making the two aspects mutually benefited. Extensive experiments are performed on three large-scale image datasets. Experimental results demonstrate the better performance of our algorithm, compared with the state-of-the-art algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号