首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, 30MSV6 microalloyed steel was heat treated under different conditions, and the relation between its microstructure and mechanical properties was investigated. Scanning electron microscopy and transmission electron microscopy were used to characterize the microstructure of the heat-treated steel, and the effect of microstructure on tensile strength and fatigue behavior was determined. Microstructural analysis indicated that precipitates were formed at different sites such as grain boundaries and sub-grain boundaries. Furthermore, microstructural studies accompanied by the evaluation of mechanical properties revealed that the optimal heat treatment cycle of 30MSV6 microalloyed steel involved austenitization at 1223 K for 1 h and cooling in air to room temperature, followed by aging at 873 K for 1.5 h. The optimal heat treatment cycle resulted in significant improvement in the fatigue strength, tensile strength, and ductility because of the development of a uniform distribution of fine precipitates in a refined microstructure. The fatigue limit under optimum conditions (~384 MPa) was greater than that under other conditions (~321 and 312 MPa).  相似文献   

2.
通过光学显微镜、扫描电镜、透射电镜、硬度测试和拉伸性能测试等方法,研究热挤压工艺、固溶时效工艺对Al-Mg-Si合金U形型材组织与性能的影响。结果表明:在热挤压过程中,型材中部分晶粒会发生动态再结晶,再结晶晶粒随后粗化形成粗晶层。在加工硬化和动态回复的共同作用下,粗晶层间的晶粒呈纤维状和亚结构。时效处理后,晶内形成相互垂直的针状β′′相,晶界处可见明显的无沉淀析出带。Al-Mg-Si合金U型型材的抗拉强度、屈服强度、伸长率分别不低于279.4 MPa、258.6 MPa和21.6%,其断口呈韧窝断裂特征。晶界强化和析出强化对型材强度提高有明显贡献。  相似文献   

3.
采用SEM分析、导电率测试、室温拉伸性能测试等方法,研究了双级固溶工艺对7050铝合金组织演变,以及对双级时效后析出相特征与力学性能的影响。结果表明,与单级固溶处理相比,双级固溶可使难溶的Al2CuMg相完全固溶,显著增加晶内时效析出相的数量,晶界析出相断续分布。双级固溶处理显著提高了7050铝合金的拉伸强度和导电率,同时保持较好的伸长率,抗拉强度达到611.9 MPa,屈服强度达到587.5 MPa,导电率为42.43%IACS,而伸长率为13.5%。  相似文献   

4.
To obtain magnesium alloys with a low density and improved mechanical properties, Y element was added into Mg−4Li−3Al (wt.%) alloys, and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy, scanning electron microscopy and tensile tests. The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion. The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy, which possesses high ultimate tensile strength (UTS=248 MPa) and elongation (δ=27%). The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement, solid solution strengthening and precipitation strengthening.  相似文献   

5.
7050铝合金热变形过程中变形程度对再结晶有重要的影响,而其各项性能与再结晶程度有关。厚度为40 mm的7050铝合金板材在410℃,以1 mm·s~(-1)的速度分别压至25,20,15和10 mm。不同热变形程度的试样固溶、时效后,观察其金相组织、透射形貌,检测其硬度、电导率、室温拉伸、疲劳及晶间腐蚀性能等。实验结果表明,7050铝合金随着热压过程中变形程度的增加,再结晶程度逐渐上升。变形程度的增加使得再结晶晶粒增多,从而7050铝合金各项力学性能得到显著地提高,其中维氏硬度提高26 HV,屈服强度及抗拉强度分别提高36和51 MPa,疲劳断裂循环次数提高376万次,但抗腐蚀性能稍有下降。  相似文献   

6.
The effects of trace Ag element on the precipitation behaviors and mechanical properties of the Mg−7.5Gd− 1.5Y−0.4Zr (wt.%) alloy by means of tensile test, X-ray diffractometry, scanning electron microscopy, electron backscattered diffractometry, and scanning transmission electron microscopy. There is an unusual texture (〈0001〉//extrusion direction) in the extruded Mg−Gd−Y−Zr alloys containing 0.5 wt.% Ag. During the aging periods at 225 °C, the addition of the trace Ag does not form new precipitates, just accelerates aging kinetics, and refines β′ precipitates, thereby increasing the number density of the β′ precipitates by Ag-clusters. Moreover, the Mg−Gd−Y−Zr alloy containing 0.5 wt.% Ag shows the most excellent synergy of strength and plasticity (408 MPa of ultimate tensile strength, 265 MPa of yield strength, and 12.9% of elongation to failure) after peak-aging.  相似文献   

7.
To avoid grain boundary (GB) precipitation during aging, a new strategy of in situ thermomechanical processing for age hardening alloys was proposed. Specifically, high-density nanoscale precipitates were introduced into ultrafine grain (UFG) interiors of 7075Al alloy by equal-channel-angular (ECAP) processing at 250 °C for 8 passes, thus avoiding GB precipitation. Tensile test results indicated that the UFG 7075Al alloy exhibits superior mechanical properties (yield strength of 350 MPa, ultimate tensile strength of 500 MPa, uniform elongation of 18% and tensile ductility of 19%) compared with the UFG 1050Al counterpart (yield strength of 170 MPa, ultimate tensile strength of 180 MPa, uniform elongation of 2.5% and tensile ductility of 7%). Fracture surface morphology studies revealed numerous homogeneous micro shear bands in necking shrinkage areas of both UFG 7075Al and 1050Al alloys, which are controlled by cooperative GB sliding. Moreover, the introduction of nanoscale precipitates in UFG 7075Al matrix weakened the tendency of shear fracture, resulting in a higher tensile ductility and more homogeneous deformation. Different from the GB precipitation during postmortem aging, in situ thermomechanical treatment dynamically formed GBs after precipitation, thus avoiding precipitation on GBs.  相似文献   

8.
As-cast Mg−6Zn−xCu−0.6Zr (x=0, 0.5, 1.0, wt.%) alloys were fabricated by permanent mold casting; then, the alloys were subjected to homogenization heat treatment and extrusion−shearing (ES) process. The microstructure and mechanical properties of the alloys were evaluated by OM, SEM/EDS, XRD, TEM, EBSD and tensile tests. The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation (PSN) effect and hinder the migration of dynamic recrystallization (DRX) grain boundary at an elevated temperature during ES. The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination (UTS of 396 MPa, YS of 313 MPa, and δ=20.3%) owing to strong grain boundary strengthening and improvement of Schmid factor for {0001} basal slip. The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy.  相似文献   

9.
The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties testing,differential scanning calorimetry(DSC)and transmission electron microscopy(TEM).The results show that the retrogression heating rate significantly affects the microstructures and mechanical properties of the alloys treated by retrogression and re-aging(RRA)process, and it is found that the medium rate(57℃/min)leads to the highest mechanical properties.The strengthening phases in the matrix are mainly the fine dispersed η′precipitates and GP zones,and the grain boundary precipitates are coarse and discontinuous η phases.  相似文献   

10.
To investigate the effect of grain refinement on the material properties of recently developed Al−25Zn−3Cu based alloys, Al−25Zn−3Cu, Al−25Zn−3Cu−0.01Ti, Al−25Zn−3Cu−3Si and Al−25Zn−3Cu−3Si−0.01Ti alloys were produced by permanent mold casting method. Microstructures of the alloys were examined by SEM. Hardness and mechanical properties of the alloys were determined by Brinell method and tensile tests, respectively. Tribological characteristics of the alloys were investigated by a ball-on-disc type test machine. Corrosion properties of the alloys were examined by an electrochemical corrosion experimental setup. It was observed that microstructure of the ternary A1−25Zn−3Cu alloy consisted of α, α+η and θ (Al2Cu) phases. It was also observed that the addition of 3 wt.% Si to A1−25Zn−3Cu alloy resulted in the formation of silicon particles in its microstructure. The addition of 0.01 wt.% Ti to the Al−25Zn−3Cu and Al−25Zn−3Cu−3Si alloys caused a decrement in grain size by approximately 20% and 39% and an increment in hardness from HRB 130 to 137 and from HRB 141 to 156, respectively. Yield strengths of these alloys increased from 278 to 297 MPa and from 320 to 336 MPa while their tensile strengths increased from 317 to 340 MPa and from 334 to 352 MPa. Wear resistance of the alloys increased, but corrosion resistance decreased with titanium addition.  相似文献   

11.
通过对不同Sn含量的ZM81合金的微观组织和力学性能的测得,研究了Sn在ZM81合金中的存在形式和作用机制及不同添加量对合金显微组织和力学性能的影响。研究结果表明:Sn元素主要以Mg2Sn共晶相形式存在,能够细化铸态组织;热挤压过程中,Sn添加能够起到抑制动态再结晶和晶粒细化的作用;T6处理,尤其是双级时效,能显著提升挤压态合金的力学性能,其中ZM81-4Sn合金具有最佳的综合力学性能,抗拉强度、屈服强度和延伸率分别为416MPa、393MPa和4.1%。实验合金高强度主要源于MgZn2和Mg2Sn析出相的双重时效强化效果;相比单级时效,双级时效态合金的析出相细小弥散,因此其力学性能更优。  相似文献   

12.
The high temperature mechanical properties (250 °C) and microstructure of a die-forged Al−5.87Zn− 2.07Mg−2.42Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the temperature increases from room temperature to 250 °C, the ultimate tensile strength of the alloy decreases from 638 to 304 MPa, and the elongation rises from 13.6% to 20.4%. Transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) were applied for microstructure characterization, which indicates that the increase of tensile temperature can lead to the coarsening of precipitates, drop of dislocation density, and increase of dynamic recovery. After tensile testing at 250 °C, a sub-grain structure composed of a high fraction of small-angle grain boundary is formed.  相似文献   

13.
以挤压铸造A356.2铝合金发动机悬置支架为研究对象,对支架铸态组织、不同固溶时效热处理后的显微组织与力学性能,以及内部缺陷进行了分析研究。结果表明,挤压铸造A356.2铝合金铸态组织由α-Al相和Al-Si共晶组成,晶粒尺寸约为148μm,二次枝晶间距约为20μm;经固溶时效处理后,共晶Si一部分溶入α-Al相中,一部分以粒状、球状形式分布在α-Al晶界;固溶时间、时效温度和时效时间对A356.2合金的力学性能有一定影响。试样经过535℃×6h固溶+8min水淬+170℃×6h时效处理后,抗拉强度为340.5MPa,屈服强度为274.5MPa,伸长率为10%,满足支架整体力学性能要求。  相似文献   

14.
添加微量Sc、Zr对超高强铝合金微观结构和性能的影响   总被引:1,自引:0,他引:1  
采用低频电磁铸造技术制备Al-9Zn-2.8Mg-2.5Cu-x Zr-y Sc(x=0,0.15%,0.15%;y=0,0.05%,0.15%)合金,借助金相显微镜、扫描电镜、透射电镜、力学性能测试等手段分别对其均匀化、热挤压态、固溶态和时效态的组织与性能进行对比分析。结果表明:添加微量Sc和Zr,会在凝固过程中形成初生Al3(Sc,Zr),可显著细化合金铸态晶粒;均匀化时形成的次生Al3(Sc,Zr)粒子可以强烈钉扎位错和亚晶界,有效抑制变形组织的再结晶,显著提高合金的力学性能。与不含Sc、Zr的合金相比,含0.05%Sc和0.15%Zr的合金经固溶处理和峰值时效处理后其抗拉强度和屈服强度分别提高172 MPa和218 MPa,其强化作用主要来自含Sc、Zr化合物对合金起到的亚结构强化、析出强化和细晶强化。  相似文献   

15.
研究电弧增材制造Inconel 625合金热处理前后的显微组织和力学性能。未热处理样品的显微组织中形成枝晶镍基固溶体相、(Nb,Ti)C碳化物、Laves相和δ-Ni3Nb二次相。固溶热处理导致Laves和Ni3Nb相的溶解。此外,枝晶被大柱状晶取代。时效热处理导致晶界M23C6碳化物和纳米γ’’晶的析出。未经热处理试样的硬度、屈服强度、抗拉强度和伸长率与铸态合金的接近,其断裂为穿晶韧性断裂。固溶热处理能提高合金的硬度和屈服强度,降低伸长率,但对抗拉强度影响不大。此外,时效热处理导致拉伸性能变差,断裂模式转变为穿晶韧性断裂和沿晶脆性断裂的混合模式。  相似文献   

16.
The effects of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg−8Li−3Al− (1,2,3)Sn (wt.%) alloys were investigated by X-ray diffractometry (XRD), optical microscopy (OM), scanning electron microscopy (SEM) and tensile test. It is found that, as-cast Mg−8Li−3Al−(1,2,3)Sn alloys consist of α-Mg+β-Li duplex matrix, MgLiAl2 and Li2MgSn phases. Increasing Sn content leads to grain refinement of α-Mg dendrites and increase in content of Li2MgSn phase. During hot extrusion, complete dynamic recrystallization (DRX) takes place in β-Li phase while incomplete DRX takes place in α-Mg phase. As Sn content is increased, the volume fraction of DRXed α-Mg grains is increased and the average grain size of DRXed α-Mg grains is decreased. Increasing Sn content is beneficial to strength but harmful to ductility for as-cast Mg−8Li−3Al−(1,2,3)Sn alloys. Tensile properties of Mg−8Li−3Al− (1,2,3)Sn alloys are improved significantly via hot extrusion and Mg−8Li−3Al−2Sn alloy exhibits the best tensile properties.  相似文献   

17.
针对选区激光熔化(SLM)成形Mar-M509合金进行了打印工艺参数优化,得到孔隙和微裂纹较少的优化工艺参数。并设计固溶、固溶+时效两种热处理制度,研究热处理对显微组织及力学性能的影响。与直接打印态样品相比,热处理主要导致两种析出相的产生,亮白色近圆形富Cr-Co碳化物颗粒和暗灰色不规则长条形富Ta-W碳化物。室温拉伸试验结果表明,沉积态样品表现出高的抗拉强度和屈服强度,固溶热处理后的抗拉强度降低500MPa,固溶+时效热处理后抗拉强度下降约350MPa。造成强度降低的主要原因是热处理过程中发生了晶粒粗化和残余应力消除。固溶处理后样品中析出物以富Cr- Co碳化物为主,少量大尺寸Ta-W碳化物沿晶界析出。固溶+时效处理后Ta-W碳化物含量增加,以沿晶界和晶内两种方式存在。热处理后材料塑性未得到改善,两种热处理制度均导致产生大量沿晶界析出的碳化物,推测会对材料塑性产生不利影响。为了改善SLM Mar-M509的强度和塑性,需通过热处理工艺对析出碳化物的尺寸和分布进一步调控。  相似文献   

18.
Microstructure of the Cu-Ni-Si-P alloy was investigated by transmission electron microscopy (TEM). The alloy had 551 MPa tensile strength, 226 HV hardness, and 36% IACS electrical conductivity after 80% cold rolling and aging at 450 °C for 2 h. Under the same aging conditions, but without the cold rolling, the strength, hardness, and electrical conductivity were 379 MPa, 216 HV, and 32% IACS, respectively. The precipitates identified by TEM characterization were δ-Ni2Si. Some semi-coherent spherical precipitates with a typical coffee bean contrast were found after aging for 48 h at 450 °C. The average diameter of the observed semi-coherent precipitates is about 5 nm. The morphology of the fracture surface was observed by scanning electron microscopy. All samples showed typical ductile fracture. The addition of P refined the grain size and increased the nucleation rate of the precipitates. The precipitated phase coarsening was inhibited by the small additions of P. After aging, the Cu-Ni-Si-P alloy can gain excellent mechanical properties with 804 MPa strength and 49% IACS conductivity. This study aimed to optimize processing conditions of the Cu-Ni-Si-P alloys.  相似文献   

19.
Residual stresses induced during quenching of aluminum alloys cause dimensional instability and distortion. In this study, the effects of different concentrations of polyalkylene glycol (PAG) quenchants on residual stresses and mechanical properties of 2024 aluminum alloy were investigated. Surface residual stresses were measured by using hole-drilling strain-gauge method. Also, mechanical properties and microstructure of the heat-treated samples were analyzed using hardness measurements, tensile tests, and transmission electron microscopy. Results showed that quenching into a 15% polymeric solution and aging at 190 °C for 12 h cause 50% reduction in residual stress as compared with quenching in water at 20 °C and naturally aging. Moreover, tensile strength decreased by 104 MPa (~?20%) in compared with the T6 sample.  相似文献   

20.
刘浩  肖铁忠  黄娟  高静 《锻压技术》2016,(6):142-145
为了研究双级固溶、双级时效处理下的固溶温度对7050铝合金的影响,采用常温拉伸、晶间腐蚀等方法研究了双级固溶、双级时效热处理制度下第二级固溶温度对7050铝合金组织和性能的影响。结果表明,随着第二级固溶温度的升高合金晶粒尺寸逐渐长大,残余第二相不断固溶。495℃时的S相基本固溶,残余第二相体积分数为0.19%,晶粒尺寸较小,合金屈服强度R_(eL)为655 MPa,抗拉强度R_m为694 MPa,伸长率A_(50 mm)为14.40%,综合力学性能最好。温度过高时合金发生过烧,性能减弱。晶间腐蚀从合金外部晶界开始向内部扩展,耐晶间腐蚀性能随着残余第二相的逐渐固溶而增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号