首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文利用硼改性纯酚醛树脂和丁腈橡胶共混的方法研制出J8601Z型胶粘剂,用其作为碳纤维摩阻材料的基料。文中应用了混料比例法设计试验方案,得到J8601Z型胶粘剂在碳纤维摩阻材料中所取的最佳比份。并对碳纤维摩阻材料进行了摩擦、磨损性能和抗热衰退性能试验。  相似文献   

2.
王志 《塑料工业》1992,(6):35-37
介绍无石棉摩阻材料的配方、制造工艺及其应用。该材料采用增韧酚醛树脂作基材、钢纤维作增强材料,添加无机或金属填料改进高、低温摩擦性能。结果表明,该摩阻材料的摩擦系数稳定在0.35±0.05,磨损率约比普通石棉摩阻材料降低1/2~1/4,成本降低1/3~1/2。该材料已安装在YWZ—630/201及YWZ—800/320制动器及伏尔加、北京212汽车上进行试验,无噪音运行良好。  相似文献   

3.
汽车用摩阻材料的研究状况   总被引:4,自引:0,他引:4  
从摩阻材料的发展历史及汽车对高性能摩阻材料的需要出发,阐述了摩阻材料的使用性能(摩擦学性能)要求,并分析了摩阻材料中各组分(包括基体树脂、增强材料、摩擦性能调节剂等)和温度、压力、速度三因素对性能的影响,提出了研究的意义和存在的问题。  相似文献   

4.
摩擦提升机用新型摩阻材料的应用研究   总被引:1,自引:0,他引:1  
翟文  陈强  孙利  梁新伟 《弹性体》2004,14(6):50-53
介绍了摩擦提升机用新型摩阻材料的制备及其性能,探讨了硫化体系、填料的含量以及耐热树脂对摩阻材料性能的影响。试验证明用硫磺硫化的聚氨酯弹性体具有较高的拉伸强度、撕裂强度和模量,并确定了材料的最佳配比;添加质量分数为40%的矿质纤维提高了弹性体的强度,改善了抗蠕变性能;通过添加耐热树脂,改善了摩阻材料的对热稳定性研制的新型摩阻材料在有润滑脂条件下摩擦系数高、耐磨性能优异,满足了竖井摩擦提升机的要求。  相似文献   

5.
以开环聚合酚醛树脂为基体,以碳纤维、钢纤维为增强材料制备新型复合摩阻材料,通过摩擦性能测试、差示扫描量热分析等方法研究了树脂基体对材料各项性能的影响。结果表明,该摩阻材料具有适宜的摩擦系数、极低的磨损率和优异的抗热衰退性能;树脂含量显著影响材料的摩阻性能,当树脂质量分数为18%~19%时,磨损率达到最小,摩擦系数也较高而稳定。而模压成型工艺参数研究表明,采用200℃模压成型,可以获得固化良好的制品;所制备的摩阻材料的各项性能指标达到准高速列车用摩阻材料技术要求,可以用作准高速列车闸瓦材料。  相似文献   

6.
本发明属于新材料领域,特别是涉及一种适用于制作汽车和火车刹车片的碳纤维增强摩阻材料及其制备方法。本发明的碳纤维增强摩阻材料由增强纤维、基体树脂、摩擦性能调节剂组成,其特征是增强纤维为碳纤维、金属纤维和无机矿物纤维的混合物,基体树脂是水乳胶改性酚醛树脂,摩擦性能调节剂采用硫酸钡、三氧化二铁、四氧化三铁、三氯化铁、氧化镁、二氧化硅中的至少两种:制备方法包含混料工序、预烘工序、压制工序和后处理工序。该碳纤维增强摩阻材料摩阻性能良好而且制备过程无污染。  相似文献   

7.
在制备的新型稀土摩阻材料中,研究了丁腈改性酚醛树脂粘结剂含量变化对材料性能的影响。结果表明:在本文实验条件下,树脂粘结剂的含量对稀土摩阻材料的摩擦磨损性能有较大影响,当树脂粘结剂含量为20%时。材料的摩擦磨损性能最佳,并且分析了树脂粘结剂含量对材料性能影响的相关因素。  相似文献   

8.
混杂纤维增强树脂基摩阻材料的性能及应用   总被引:1,自引:0,他引:1  
采用碳纤维和钢纤维为增强材料、硼酚醛树脂为基体,通过模压成型制得新型混杂纤维增强树脂基摩阻材料。研究了摩阻材料的增强材料和基体类型对摩擦磨损性能的影响。结果表明,以Ⅱ型PAN基碳纤维和Ⅱ型钢纤维为增强材料,Ⅰ型硼酚醛树脂为基体材料,可以获得性能优良的摩阻材料,其摩擦磨损性能优于市售产品,可作为准高速列车的闸瓦材料使用。  相似文献   

9.
利用D—MS摩擦试验机研究了碳纤维含量对改性酚醛摩阻材料摩擦磨损性能的影响。碳纤维含量对摩阻材料的摩擦磨损性能影响显著,摩阻材料的摩擦系数和磨损率随碳纤维含量的增加而减小,提出改性酚醛摩阻材料中碳纤维含量不宜超过5%。扫描电镜分析表明,材料的摩擦磨损机理与碳纤维含量密切相关。  相似文献   

10.
芳纶/玻纤混杂纤维增强摩阻材料的研究   总被引:2,自引:0,他引:2  
针对摩阻材料无石棉化的发展趋势,以丁腈橡胶改性酚醛为树脂基体,芳纶浆粕-玻纤混杂为增强体,研制出一种混杂纤维增强摩阻材料。经检测,该材料力学性能较高,摩擦性能稳定,摩擦因数在0.45 ̄0.60,同时具有较好的耐磨性。  相似文献   

11.
SiC改性稀土摩阻材料的研究   总被引:1,自引:0,他引:1  
王进福  韦永德 《炭素》2003,(1):7-10
通过SiC掺杂粘结剂丁腈改性酚醛树脂及基体配方中加入SiC,提高稀土 摩阻材料的性能,结果表明:在本实验条件下,TGA显示粘结剂的热分解温度升高,摩阻材料的耐热性能改善即高温摩擦系数增加,磨损率降低,而且常温下冲击强度有所提高。比较了摩阻材料添加SiC与未添加SiC时材料的性能,并初步分析了产生影响的相关因素。  相似文献   

12.
碳/碳化硅是近年来发展起来的一种新型高性能陶瓷基摩阻材料,具有密度低,抗氧化性好,摩擦性能高且性能稳定等一系列优点,在高速列车、飞机和重型汽车等高能载制动领域具有广泛的应用前景.反应性熔体浸渗法是制备碳/碳化硅摩阻复合材料的有效途径.从碳/碳化硅摩阻复合材料的设计出发,深入分析了反应性熔体渗透过程的热力学条件,Si-C反应体系的基本特征以及动力学规律.针对短纤维模压和三维针刺等两种典型C/SiC复合材料的制备过程,对材料的微结构特征和摩擦磨损性能进行了系统论述.同时,对红外热成像、X射线透射和工业CT等先进工程检测方法在碳/碳化硅摩阻复合材料构件上的应用进行了分析.  相似文献   

13.
新型无石棉摩阻材料用增强纤维研究进展   总被引:1,自引:0,他引:1  
综述了近几年无石棉摩阻材料用增强纤维研究进展,介绍了摩阻材料在使用过程中的摩擦磨损机制,重点介绍了新型无石棉摩阻材料用增强纤维的研究成果。  相似文献   

14.
PYSM悬浮酚醛树脂——新一代摩阻材料基体树脂的开发   总被引:2,自引:2,他引:2  
介绍了采用悬浮法合成腰果壳油和三聚氰胺改性酚醛树脂的方法。研究了该树脂作为摩阻材料基体树脂的耐热性能和抗摩擦性能 ,该树脂性能优于通用型 2 12 3酚醛树脂 ,而工艺性又优于传统的本体合成法 ,呈现良好开发前景。  相似文献   

15.
B4C掺杂丁腈改性酚醛树脂对摩阻材料性能的影响   总被引:4,自引:0,他引:4  
研究了在丁腈改性酚醛树脂中掺杂B4C制备的摩阻材料的性能,结果表明:摩阻材料的耐热性能改善,高温摩擦系数增加,磨损率降低;常温下冲击强度有所提高,通过比较掺杂B4C前后摩阻材料性能的变化,对有关影响因素进行了初步的分析。  相似文献   

16.
纤维增强摩阻材料的冲击性能研究   总被引:2,自引:0,他引:2  
主要研究了丁腈橡胶形态、粘结剂含量及混杂纤维含量对混杂纤维增强摩阻材料冲击性能的影响。结果表明,酚醛树脂中混入丁腈橡胶可大大提高摩阻材料的冲击性能,其中,液态丁腈橡胶与树脂混合制作的纤维增强摩阻材料的冲击性能较高;用质量分数为28%-29%的粘结剂与28%的混杂纤维制得的摩阻材料的冲击性能最佳。  相似文献   

17.
针对WSM–3型酚醛树脂基无石棉摩阻材料,搭建实验装置研究WSM–3型闸瓦材料与16Mn钢摩擦副摩擦性能。根据实验数据,研究了瞬态/平均摩擦系数随不同接触压力、不同滑动速度及不同接触表面温度的变化规律,在考察多种曲线的基础上,分析瞬态/平均摩擦系数在不同工况参数下的变化特性,并探讨了闸瓦材料摩擦性能的变化机制。实验证实,闸瓦材料的摩擦性能不仅具有强烈的系统依赖性,而且与系统的工况因素具有强耦合性,在闸瓦材料摩擦学设计中将瞬态/平均摩擦系数视作变量是必要的。  相似文献   

18.
玻璃纤维增强酚醛摩阻材料   总被引:2,自引:0,他引:2  
针对玻璃纤维增强酚醛摩阻材料存在的问题,研究分析了不同类型玻纤维增强酚醛树脂、玻纤增强橡胶改性酚醛树脂、下纤增强三聚氰胺腰果壳油改性酚醛树以及混杂纤维增强酚醛树脂摩阻材料的性能,并对摩阻复合材料的发展提出建议。  相似文献   

19.
作为车辆和机械离合器总成及制动器中的关键性安全部件,高性能刹车片摩擦材料的研究广泛受到各科研机构和主机厂的关注。本文介绍了刹车片摩擦材料的可压缩性、内剪切强度、热膨胀量等主要性能,同时从粘结剂、增强纤维、填料和摩擦性能调节剂等方面概述了主要影响刹车片摩擦材料性能的研究现状,并归纳了正交试验设计与模糊综合评价法、黄金分割法与灰色相关度分析、人工神经网络等摩擦材料配方设计及优化方法的应用情况,进一步探索了刹车片摩擦材料的未来发展趋势,指出摩擦材料各组分之间的耦合机理及对性能影响的研究是未来的热点,多种优化方法的融合将有利于新型刹车片摩擦材料的开发应用。  相似文献   

20.
玄武岩纤维用于国内摩擦材料的可行性研究   总被引:5,自引:0,他引:5  
将试制的玄武岩短切纤维进行了配方试验和性能测试.分析玄武岩纤维在国内摩擦材料中的应用前景,介绍了玄武岩纤维在摩擦材料中的应用.通过对玄武岩短切纤维增强制动片的检测认为其适合作为摩擦材料的增强材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号