首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The formation of alloyd ohmic contacts on n-InP using sequentially deposited Sn plus Au films was investigated. The specific contact resistance for metallizations with a Sn content of 5 at. % was determined for annealing temperatures between 250 and 500°C. The minimum specific contact resistance, rc = (1.8±0.9) × 10?6 ohm-cm2 occurred for a narrow range of annealing temperatures between 380 and 410°C on substrates with n = 3 × 1018/cm3. For annealing temperatures 350°C the contacts were non-Ohmic and above 420°C the resistance increased dramatically. Contact morphology and metallurgy were studied by optical and scanning electron microscopy, X-ray diffraction, Auger electron spectroscopy and Rutherford backscattering. Films annealed above 320°C contained several phases, mainly Au4In, AuSn and polycrystalline InP. The contacts annealed at temperatures above 410°C were composed predominantly of the single phase Au3In2.  相似文献   

2.
A technique is given for preparation of low noise ohmic contacts on n-type silicon using silver-silicon eutectic. It allows reaching electric fields up to 20 kV cm1 in a wide range of resistivities and lattice temperatures (300–6°K). Interface chemical composition and structure is studied using scanning electron microscopy and X-ray analysis. Contact resistivity ?c is studied versus bulk resistivity ? and lattice temperature T. High field conductivity shows that ?c is not sufficient to characterize ohmic contacts. It is shown that the contact noise (j2/f) law is valid up to 500 MHz and that noise measurements are much more sensitive to contact behavior than first order coefficients. Contact noise may be important at intermediate bias but is proved to be negligible both at very low and very high bias. Moreover it has been possible to define a contact quality factor which provides a quantitative characterization of contact behavior.  相似文献   

3.
The behavior of an ohmic contact to an implanted Si GaN n-well in the temperature range of 25-300 °C has been investigated. This is the sort of contact one would expect in many GaN based devices such as (source/drain) in a metal-oxide-semiconductor transistor. A low resistivity ohmic contact was achieved using the metal combination of Ti (350 Å)/Al (1150 Å) on a protected (SiO2 cap) and unprotected samples during the post implantation annealing. Sheet resistance of the implanted layer and metal-semiconductor contact resistance to N+ GaN have been extracted at different temperatures. Both, the experimental sheet resistance and the contact resistance decrease with the temperature and their characteristics are fitted by means of physical based models.  相似文献   

4.
An electron trap spectrum has been obtained in Te-doped GaAsP by DLTs and transient capacitance measurements. The two traps identified display non-exponential emission and capture characteristics, the capture rate depending on temperature. The dominant trap A has an activation energy, Ea = 0.20 ± 0.02 eV and a constant concentration in the epilayer of typically 0.1Nd, trap B has an activation energy, Ea = 0.4 eV.The defect is donor related and characterised by non-radiative capture and lattice-relaxation multiphonon emission. Photocapacitance measurements provide the electron photoionization cross-section of the centre, and in agreement, a phonon broadened lineshape theory gave a threshold of 0.62 eV supporting the large lattice relaxation model. Evidence for persistent photoconductivity is also presented.  相似文献   

5.
Most papers covering metal-semiconductor ohmic contact theory which have been published up to date consider systems with homogeneous impurity concentration in the semiconductor. However, there are techniques of ohmic contact formation on nondegenerate semiconductor where only a very shallow surface layer is impurity enriched. In this paper a model of such contacts is proposed and a simple approximate analytical expression for the specific resistivity is derived. If the impurity concentration in the surface layer is very high, the contact specific resistivity is essentially proportional to NB?1, NB being the semiconductor substrate impurity concentration. To make a good ohmic contact, it is sufficient that the width of the heavily doped surface layer be equal to the equilibrium contact depletion region width. Any further enlargement of the enriched layer practically does not influence the total sample resistance due to the dominant share of the semiconductor body resistance. Experimental results confirm these conclusions qualitatively.  相似文献   

6.
New In0.4Al0.6As/In0.4Ga0.6 As metamorphic (MM) high electron mobility transistors (HEMTs) have been successfully fabricated on GaAs substrate with T-shaped gate lengths varying from 0.1 to 0.25 μm. The Schottky characteristics are a forward turn-on voltage of 0.7 V and a gate breakdown voltage of -10.5 V. These new MM-HEMTs exhibit typical drain currents of 600 mA/mm and extrinsic transconductance superior to 720 mS/mm. An extrinsic current cutoff frequency fT of 195 GHz is achieved with the 0.1-μm gate length device. These results are the first reported for In0.4 Al0.6As/In0.4Ga0.6As MM-HEMTs on GaAs substrate  相似文献   

7.
Sintered metal-semiconductor contacts, formed by thin, evaporated layers of Pd and Ge on n-type GaAs, were studied using Auger electron spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, current-voltage measurements, and capacitance-voltage measurements. Prior to sintering, the as-deposited Pd/Ge/GaAs contacts were rectifying and exhibited a reproducible Schottky barrier energy φBn of 0.67±0.02 eV. Auger analysis indicated the initial behavior of the contact structure, upon sintering, to be an interdiffusion and reaction of Pd and Ge on a non-reacting GaAs substrate. Two germanide phases, Pd2Ge and PdGe, were identified using X-ray diffraction and Auger analysis. The intervening Ge layer prevented the reaction of Pd with the GaAs substrate at low temperatures. Because of the PdGe reaction, φBn increased to approximately 0.85 eV. Sintering at higher temperatures (i.e. between 300 and 400°C) produced additional reactions between Pd and the GaAs substrate. The electrical properties of the contact remained rectifying and φBn exhibited little change from the value of 0.85 eV with the interdiffusion of Pd, Ga, and As. Sintering above 400°C resulted in the formation of ohmic contacts. The diffusion of Ge to the GaAs interface was found to correlate with the onset of ohmic behavior. Current conduction in the contact was best described by thermionic-field emission theory, and a specific contact resistance of 3.5 × 10?4Ω-cm2 was obtained after sintering above 550°C, independent of the initial impurity concentration in the substrate. Over the entire range of sintering temperatures (i.e. at or below 600°C), the interaction between the thin-film layers appeared to be governed by diffusion-controlled, solid-phase processes with no evidence of the formation of a liquid phase. As a result, the surface of the contact structure remained smooth and uniform during sintering.  相似文献   

8.
Results of electrical measurements on 1 MeV O+ implanted n-type GaAs are reported. After annealing the implanted material it is found that the free carrier compenasation rate (k), defined by Favennec[1] as the number of carriers removed per oxygen atom, can be dependent upon both the starting material and the implanted dose.  相似文献   

9.
The transport properties and device characteristics of pseudomorphic In0.4Al0.6As/InP modulation-doped heterostructures are investigated. The existence of a two-dimensional electron gas at the heterojunction was confirmed by Shubnikov-de Haas measurements. A high electron mobility transistor (HEMT) having a gate length of 1.5 μm showed extrinsic transconductances and drain current densities as high as 160 mS/mm and 300 mA/mm, respectively. The HEMT also showed a very small output conductance of less than 2 mS/mm and high gate-drain breakdown voltage of larger than 15 V. These results show the great potential of this HEMT for high-voltage gain and high-power microwave applications  相似文献   

10.
Ge is commonly used as an n+ dopant in fabricating ohmic contacts to n-type GaAs. It is suggested here that the donor-like behaviour of this otherwise amphoteric impurity may be related to the effect of distortion of the GaAs lattice on Ge impurities. Attempts to maximise the Ge n+ doping behaviour, however, may enhance lattice strain and degrade device life-time.  相似文献   

11.
An amorphous Ba0.6Sr0.4TiO3 (BST) film with the thickness of 200 nm was deposited on indium-tin-oxide (ITO)-coated glass substrate through sol-gel route and post-annealing at 500 °C. The dielectric constant of the BST film was determined to be 20.6 at 100 kHz by measuring the Ag/BST/ITO parallel plate capacitor, and no dielectric tunability was observed with the bias voltage varying from −5 to 5 V. The BST film shows a dense and uniform microstructure as well as a smooth surface with the root-mean-square (RMS) roughness of about 1.4 nm. The leakage current density was found to be 3.5 × 10−8 A/cm2 at an applied voltage of −5 V. The transmittance of the BST/ITO/glass structure is more than 70% in the visible region. Pentacene based transistor using the as-prepared BST film as gate insulator exhibits a low threshold voltage of −1.3 V, the saturation field-effect mobility of 0.68 cm2/Vs, and the current on/off ratio of 3.6 × 105. The results indicate that the sol-gel derived BST film is a promising high-k gate dielectric for large-area transparent organic transistor arrays on glass substrate.  相似文献   

12.
A study was made of the contact properties of a AuBe eutectic and a AuBeNi alloy on p-type GaP. The specific contact resistance varied from 1 × 10?3 to 7.5 × 10?5 ω cm2 in the acceptor concentration range of 9 × 1016 to 2 × 1018 cm?3. In the sintering temperature range resulting in good ohmic behaviour and low contact resistance the AuBe contacts do not form drops, whereas the AuBeNi contacts became molten; even after melting they wetted the surface of the GaP well. At the temperature of sintering Be diffuses from the contact into the GaP. The diffusion of Be gives rise to an additional acceptor concentration of 5 × 1018 to 1 × 1019 cm?3 beneath the contact surface. Taking this into consideration the concentration-specific contact resistance relationship appears to support a field emission FE conduction mechanism.  相似文献   

13.
We present a new ohmic contact material NiSi2 to n-type 6H-SiC with a low specific contact resistance. NiSi2 films are prepared by annealing the Ni and Si films separately deposited on (0 0 0 1)-oriented 6H-SiC substrates with carrier concentrations (n) ranging from 5.8×1016 to 2.5×1019 cm−3. The deposited films are annealed at 900 °C for 10 min in a flow of Ar gas containing 5 vol.% H2 gas. The specific contact resistance of NiSi2 contact exponentially decreases with increasing carrier concentrations of substrates. NiSi2 contacts formed on the substrates with n=2.5×1019 cm−3 show a relatively low specific contact resistance with 3.6×10−6 Ω cm2. Schottky barrier height of NiSi2 to n-type 6H-SiC is estimated to be 0.40±0.02 eV using a theoretical relationship for the carrier concentration dependence of the specific contact resistance.  相似文献   

14.
Ga0.47In0.53As epitaxial layers on InP substrate have been subjected to proton bombardment. The resistivity increases up to 104Ω cm for 1014H+/cm2 in p-type and 3 · 1016H+/cm2 in n-type a0.47In0.53As implanted at 77 K. Proton bombardment at 300 K showed this increase in resistivity only for p-type material. Channeling experiments indicated that the damage of the lattice which seems to be responsible for the resistivity increase of n-material can be produced only at low temperature with doses of the order of 1016H+/cm2. Crystalline layers implanted with high dose showed blistering effects after heat treatments.  相似文献   

15.
The ohmic contact formation mechanism and the role of Pt layer of Au(500Å) Pt(500Å)/Pd(100Å) ohmic contact to p-ZnTe were investigated. The specific contact resistance of Au/Pt/Pd contact depended strongly on the annealing temperature. As the annealing temperature increased, the specific contact resistance decreased and reached a minimum value of 6×10?6 Θcm2 at 200°C. From the Hall measurement, the hole concentration increased with the annealing temperature and reached a maximum value of 2.3×1019 cm?3 at 300°C. The Schottky barrier height decreased with the increase of annealing temperature and reached a minimum value of 0.34 eV at 200°C and it was due to the interfacial reaction of Pd and ZnTe. Therefore, the decrease of contact resistance was due to the increase of doping concentration as well as the decrease of Schottky barrier height by the interfacial reaction of Pd ZnTe. The specific contact resistances of Au Pd, Au/Pt/Pd and Au/Mo/Pd as a function of annealing time was investigated to clarify the role of Pt layer.  相似文献   

16.
Avalanche multiplication and excess noise were measured on a series of Al0.6Ga0.4As p+in+ and n+ip+ diodes, with avalanche region thickness, w ranging from 0.026 μm to 0.85 μm. The results show that the ionization coefficient for electrons is slightly higher than for holes in thick, bulk material. At fixed multiplication values the excess noise factor was found to decrease with decreasing w, irrespective of injected carrier type. Owing to the wide Al0.6Ga0.4As bandgap extremely thin devices can sustain very high electric fields, giving rise to very low excess noise factors, of around F~3.3 at a multiplication factor of M~15.5 in the structure with w=0.026 μm. This is the lowest reported excess noise at this value of multiplication for devices grown on GaAs substrates. Recursion equation modeling, using both a hard threshold dead space model and one which incorporates the detailed history of the ionizing carriers, is used to model the nonlocal nature of impact ionization giving rise to the reduction in excess noise with decreasing w. Although the hard threshold dead space model could reproduce qualitatively the experimental results, better agreement was obtained from the history-dependent model  相似文献   

17.
18.
Cobalt disilicide (CoSi2) ohmic contacts possessing low specific contact resistivity (c < 3.0 ± 0.4 × 10−5 ωcm2) to n-type 6H---SiC are reported. The contacts were fabricated via sequential electron-beam evaporation of Co and Si layers followed by a two-step vacuum anealing process at 500 and 900°C. Stochiometry of the contact so formed was confirmed by Rutherford backscattering spectrometry and X-ray diffraction. Specific contact resistivities were obtained via current-voltage (I-V) analysis at temperatures ranging from 25 to 500°C. c is compared as a function of carrier concentration, current density, temperature and time at elevated temperature.  相似文献   

19.
The contact properties of various metal combinations, deposited by vacuum evaporation on InP, were studied. Among these metal combinations, Au/Ge + Ni and Au/Zn proved to be most suitable. The former on n-InP (n = 8 × 1017/cm3) and the latter on p-InP (p = 9 × 1017/cm3) exhibited specific contact resistances as low as 1.2 × 10?6 and 1.1 × 10?4 Ωcm2, respectively. The specific contact resistances were analyzed using a four-point method which also accounts for the spreading resistance. Furthermore, the resistances of metal contacts to InP were calculated as a function of doping concentration and were compared with the experimental results. The described contacting technique was successfully applied to the preparation of quaternary lasers.  相似文献   

20.
Epitaxial Ba0.6Sr0.4TiO3 (BST) thin films were deposited on LaAlO3 (LAO) substrates with the conductive metallic oxide La0.5Sr0.5CoO3 (LSCO) film as a bottom electrode by pulsed laser deposition (PLD). X-ray diffraction ~2 and Ф scan showed that the epitaxial relationship of BST/LSCO/LAO was [001] BST//[001] LSCO//[001] LAO. The atomic force microscope (AFM) revealed a smooth and crack-free surface of BST films on LSCO-coated LAO substrate with the average grain size of 120 nm and the RMS of 1.564 nm for BST films. Pt/BST/LSCO capacitor was fabricated to perform CapacitanceVoltage measurement indicating good insulating characteristics. For epitaxial BST film, the dielectric constant and dielectric loss were determined as 471 and 0.03, respectively. The tunabilty was 79.59% and the leakage current was 2.6310-7 A/cm2 under an applied filed of 200 kV/cm. Furthermore, it was found that epitaxial BST (60/40) films demonstrate well-behaved ferroelectric properties with the remnate polarization of 6.085 C/cm2 and the coercive field of 72 kV/cm. The different electric properties from bulk BST (60/40) materials with intrinsic paraelectric characteristic are attributed to the interface effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号