首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Au/Ti/n-GaAs structures with and without Al2O3 interfacial layer have been fabricated.The Al2O3 interfacial layer has been formed on the GaAs substrate by atomic layer deposition.The effects of the interfacial layer on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the devices have been investigated in the temperature range of 60-300 K.It has been seen that the carrier concentration from C-V characteristics for the MIS (metal/insulating layer/semiconductor) diode with Al2O3 interfacial layer has a higher value than that for the reference diode without the Al2O3 interfacial layer (MS).Such a difference in the doping concentration has been attributed not to doping variation in the semiconductor bulk but to the presence of the Al2O3 interfacial layer because both diodes have been made on the pieces cut from the same n-type GaAs wafer.The temperaturedependent I-V characteristics of the MIS diode do not obey the thermionic emission current theory because of the presence of the Al2O3 layer.An electron tunneling factor,aδ(χ)1/2,value of 20.64 has been found from the I-V-T data of the MIS diode.An average value of 0.627 eV for the mean tunneling barrier height,χ,presented by the Al2O3 layer has been obtained.  相似文献   

2.
GaAs Schottky barrier diodes with near-ideal electrical and noise characteristics for mixing applications in the terahertz frequency range are described. The conventional formulas describing these characteristics are valid only in a limited forward bias range, corresponding to currents much smaller than the operating currents under submillimeter mixing conditions. Therefore, generalized analytical expressions for the I-V and C-V characteristics of the metal-semiconductor junction in the full bias range are given. A new numerical diode model is presented which takes into account not only the phenomena occurring at the junction, such as current dependent recombination and drift/diffusion velocities, but also the variations of electron mobility and electron temperature in the undepleted epi-layer. A diode fabrication process based on the electrolytic pulse etching of GaAs in combination with an in situ platinum plating for the formation of the Schottky contacts is described. Schottky barrier diodes with a diameter of 1 μm fabricated by this process have already shown excellent results in a 650-GHz waveguide mixer at room temperature  相似文献   

3.
A correlation between the current-voltage (I-V) and the capacitance-voltage (C-V) characteristics of Schottky barrier diodes (SBDs) is revealed and claimed to be a general property of SBDs for the first time. Analytical expressions explaining the correlation based on the electric field dependence of the Schottky barrier height are derived, yielding novel approaches to evaluate Schottky barrier height lowering and to model the device behaviors  相似文献   

4.
Capacitance-voltage (C-V) and current-voltage (I-V) measurements were used to study the thermal reaction of Pd/GaAs contacts and Ni/GaAs contacts. The thickness of GaAs consumed by the metal/GaAs reaction during annealing was calculated from C-V analyses and I-V analyses. For annealing temperatures below 350°C, the Schottky characteristics of the diodes were good but the electrical junction moves into the GaAs after annealing. The amount of junction movement was calculated directly from our measurements. The diffusion coefficients of Pd and Ni in GaAs at 300°C were estimated both to be around 1.2 × 1014 cm2/s.  相似文献   

5.
Pd/Si MIS Schottky diode hydrogen detectors have been fabricated with a response of 2-3 orders of magnitude change in current for 154 ppm of H2in N2. Detailed evaluation of dark I-V, C-V, illuminated I-V, and internal photoemission data unambiguously ascribes the strong hydrogen sensitivity of these diodes to hydrogen-induced change in the work function of Pd, rather than to any surface-state effects. The reaction rate of the device to different gas ambients has been studied with time response measurements. A long-term degradation mechanism has been identified and traced to the poisoning of Pd by environmental sulfur. The role of oxygen and atomic hydrogen in determining the Schottky barrier height also is discussed in some detail.  相似文献   

6.
标准CMOS工艺集成肖特基二极管设计与实现   总被引:1,自引:0,他引:1  
提出了一种在标准CMOS工艺上集成肖特基二极管的方法,并通过MPW在charted 0.35μm工艺中实现.为了减小串连电阻,肖特基的版图采用了交织方法.对所设计的肖特基二极管进行了实测得到I-V,C-V和S参数,并计算得出所测试肖特基二极管的饱和电流、势垒电压及反向击穿电压.最后给出了可用于SPICE仿真的模型.  相似文献   

7.
/sup 60/Co gamma irradiation effects on n-GaN Schottky diodes   总被引:1,自引:0,他引:1  
The effect of /spl gamma/-ray exposure on the electrical characteristics of nickel/n-GaN Schottky barrier diodes has been investigated using current-voltage (I-V), capacitance-voltage (C-V), and deep-level transient spectroscopy (DLTS) measurements. The results indicate that /spl gamma/-irradiation induces an increase in the effective Schottky barrier height extracted from C-V measurements. Increasing radiation dose was found to degrade the reverse leakage current, whereas its effect on the forward I-V characteristics was negligible. Low temperature (/spl les/50) post-irradiation annealing after a cumulative irradiation dose of 21 Mrad(Si) was found to restore the reverse I-V characteristics to pre-irradiation levels without significantly affecting the radiation-induced changes in C-V and forward I-V characteristics. Three shallow radiation-induced defect centers with thermal activation energies of 88 104 and 144 meV were detected by DLTS with a combined production rate of 2.12 /spl times/ 10/sup -3/ cm/sup -1/. These centers are likely to be related to nitrogen-vacancies. The effect of high-energy radiation exposure on device characteristics is discussed taking into account possible contact inhomogeneities arising from dislocations and interfacial defects. The DLTS results indicate that GaN has an intrinsically low susceptibility to radiation-induced material degradation, yet the effects observed in the Schottky diode I-V and C-V characteristics indicate that the total-dose radiation hardness of GaN devices may be limited by susceptibility of the metal-GaN interface to radiation-induced damage.  相似文献   

8.
The effect of potassium hydroxide (KOH) treatment was investigated for Pt/n-GaN Schottky diodes using current-voltage (I-V) and capacitance-voltage (C-V) characteristics. Atomic force microscopy (AFM) showed that the surface profile did not change significantly as a result of KOH treatment. The Schottky barrier height increased for both I-V and C-V measurements. The reverse leakage current was also reduced by KOH treatment. By fitting these data to the reverse current based on the thermionic field emission (TFE) model, it was shown that the experimental results are consistent with the presence of high densities of surface states, which were reduced appreciably by KOH treatment. The similar behavior of Pt/n-GaN samples grown by hydride vapor phase epitaxy (HVPE) suggests that the KOH treatment is effective in improving the rectifying characteristics of Schottky barriers to n-GaN grown by both organometallic vapor phase epitaxy (OMVPE) and HVPE.  相似文献   

9.
The possible origins of the leaky characteristics of a Schottky barrier on p-GaN have been investigated. The as-grown samples did not show any electrical activity using Hall measurements. Ni diodes made on as-activated samples, either at 950/spl deg/C for 5 s or at 750/spl deg/C for 5 min exhibited quasiohmic behavior. Upon sequential etching of the sample to remove a surface layer of 150 /spl Aring/, 1200 /spl Aring/, and 5000 /spl Aring/ from the sample, the I-V behavior became rectifying. I-V-T measurements showed that the slopes of the lnI-V curves were independent of the temperature, indicative of a prominent component of carrier tunneling across the Schottky junction. C-V measurements at each etch-depth indicated a decreasing acceptor concentration from the surface. The highly doped (>1.7 /spl times/ 10/sup 19/ cm/sup -3/) and defective surface region (within the top 150 /spl Aring/ from surface) rendered the as-activated Schottky diodes quasiohmic in their I-V characteristics. The leaky I-V characteristics, often reported in the literature, were likely to originated from the surface layer, which gives rise to carrier tunneling across the Schottky barrier. This highly doped/defective surface region, however, can play an important role in ohmic contact formation on p-GaN.  相似文献   

10.
本文研究了经直流磁控溅射制备的TiN/GaAs肖特基结的电学特性.给出了不同退火温度下I-V,C-V测量结果及TiN/GaAs与Au/GaAs,Ti/GaAs,Al/GaAs接触特性的比较.应用AES与XPS进行肖特基结的表面和界面剖析,发现退火过程中TiN膜的氧化,N在TiN膜中的再分布及TiN-GaAs接触界面上的化学重组对肖特基结的接触特性有重要影响.  相似文献   

11.
Electrical properties, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, have been measured on a large number of Ti, Ni, and Pt-based Schottky barrier diodes on 4H-SiC epilayers. Various nonideal behaviors are frequently observed, including ideality factors greater than one, anomalously low I-V barrier heights, and excess leakage currents at low forward bias and in reverse bias. The nonidealities are highly nonuniform across individual wafers and from wafer to wafer. We find a pronounced linear correlation between I-V barrier height and ideality factor for each metal, while C-V barrier heights remain constant. Electron beam induced current (EBIC) imaging strongly suggests that the nonidealities result from localized low barrier height patches. These patches are related to discrete crystal defects, which become visible as recombination centers in the EBIC images. Alternative explanations involving generation-recombination current, uniform interfacial layers, and effects related to the periphery are ruled out.  相似文献   

12.
Porous SiC (PSC) has been proposed as a buffer layer for reducing defects in epitaxial SiC layers. In this study, electrical characteristics of a 6H-SiC epitaxial layer grown by chemical vapor deposition on a porous SiC substrate (SiC-on-PSC) have been compared to those simultaneously grown on a standard SiC substrate (SiC-on-STD). Schottky barrier diodes (SBDs) have been fabricated on both epitaxial layers and then investigated with temperature-dependent current-voltage (I-V), capacitance-voltage (C-V), and deep-level transient spectroscopy (DLTS) measurements. The SBDs on both SiC-on-PSC and SiC-on-STD show about the same I-V and C-V characteristics, and at least four electron traps, i.e., B (0.75 eV), C (0.63 eV), D (0.40 eV), and E (0.16 eV), can be identically found in both SBDs by DLTS measurements. Thus, we conclude that the electrical quality of SiC-on-PSC is comparable to that of SiC-on-STD, and that the higher breakdown voltages observed in SBDs on SiC-on-PSC are not obviously related to a different defect structure.  相似文献   

13.
We have fabricated 1 kV 4H and 6H SiC Schottky diodes utilizing a metal-oxide overlap structure for electric field termination. This simple structure when used with a high barrier height metal such as Ni has consistently given us good yield of Schottky diodes with breakdown voltages in excess of 60% of the theoretically calculated value. This paper presents the design considerations, the fabrication procedure, and characterization results for these 1 kV Ni-SiC Schottky diodes. Comparison to similarly fabricated Pt-SiC Schottky diodes is reported. The Ni-SiC ohmic contact formation has been studied using Auger electron spectroscopy and X-ray diffraction. The characterization study includes measurements of current-voltage (I-V) temperature and capacitance-voltage (C-V) temperature characteristics. The high-temperature performance of these diodes has also been investigated. The diodes show good rectifying behavior with ON/OFF current ratios, ranging from 106 to 10 at 27°C and in excess of 106 up to 300°C  相似文献   

14.
The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson-Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal-semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process of thermionic electrons and holes, which will in turn act on the I-V characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.  相似文献   

15.
研究了测试频率为0.3~1.5MHz时GaN基肖特基器件的电容特性.实验发现,在Au/i-GaN肖特基器件的电容-电压(C-V)特性曲线中,出现了峰和负值电容,而Au/i-Al0.45Ga0.55N肖特基器件的C-V特性曲线中则既没有峰也没有负值电容的出现.对肖特基器件的电流-电压(I-V)特性和C-V特性进行参数提取和分析后认为,负值电容和峰的出现源于界面态的俘获和损耗,但较大的串联电阻将减弱界面态的作用.  相似文献   

16.
本文研究了超薄的金属/LB绝缘膜/半导体(MLS)结构的C-V和I-V特性,理论分析与实验结果相一致,结论如下:(1)超薄MLS结构具有正常的C-V特性和I-V特性;(2)以LB薄膜作为绝缘层可调整肖特基器件势垒高度。  相似文献   

17.
Schottky barriers on n-GaN grown on SiC   总被引:2,自引:0,他引:2  
Characteristics of Schottky barriers fabricated on n-type GaN were investigated. The barriers were formed by vacuum thermal evaporation of Cr, Au, and Ni. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the barriers were measured in a wide temperature and current density range. Fundamental parameters (barrier height and built-in potential) of the Schottky barriers were determined. The dependence of the barrier ideality factor on doping concentration in GaN was measured. Correlation between the barrier height and metal work function was observed. The electron affinity for GaN was determined using both C-V and I-V characteristics. The current flow mechanism through the barriers is discussed.  相似文献   

18.
This is a first time report of a ruthenium oxide (RuO2) Schottky contact on GaN. RuO2 and Pt Schottky diodes were fabricated and their characteristics compared. When the RuO2 Schottky contact was annealed at 500°C for 30 min, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the RuO2 were dramatically improved. The annealed RuO2 /GaN Schottky contact exhibited a reverse leakage current that was at least two or three orders lower in magnitude than that of the Pt/GaN contact along with a very large barrier height of 1.46 eV, which is the highest value ever reported for a GaN Schottky system  相似文献   

19.
The Schottky barrier heights of metals Au, Ag, and Al fabricated by vacuum vapor deposition on liquid encapsulated Czochralski (LEC) grown undoped ntype GaAs (n = 2.35 × 1015 cm−3) were measured with current-voltage (I-V) and capacitance-voltage (C-V) techniques. Good ohmic contacts were obtained through an after deposition anneal at 430°C for two minutes in an argon gas atmosphere. In the as-deposited state, Au, Ag, and Al gave very similar I-V characteristics for n-type substrates with the barrier height qϕb = 0.81-1.16 eV and ideality factor n = 1.02-1.15. The C-V measurement also gives the same value of barrier height. The distribution of carrier concentration along the radial distance of the wafer is of‘M’ shape. The Al/GaAs interfaces give the nonideal rectification behavior. The Au/GaAs interfaces give the near ideal rectification behavior. The barrier height of this interface is 0.89-0.92 eV and the ideality factor is about 1.10–1.19. Electron traps in the wafer have been found by constant capacitance deep level transient spectroscopy (CC-DLTS). Mainly the EL2, EL6, and EL3 (EI1) trap levels are prominent.  相似文献   

20.
Barrier height engineering of n-GaAs-based millimeter-wave Schottky diodes using strained InGaAs/GaAs and InGaP/GaAs heterostructures and a high doping surface layer is presented. The Schottky barrier height can be varied between Φfb=0.52 eV and Φfb=1.0 eV. The use of a pseudomorphic InGaAs layer and/or a thin high doping layer at the surface significantly reduces the Schottky barrier height. This is advantageous for low-drive zero bias mixing applications, A full quantum mechanical numerical calculation is presented to simulate the influence of different high doping layer thicknesses on the diode's dc characteristic. The theoretical results are compared with experimental results, For reverse bias applications (e.g., varactors) a barrier height and breakdown voltage enhancement is realized with a lattice matched InGaP/GaAs heterostructure. The barrier height value is determined by temperature dependent dc-measurements. The epitaxial layered structures are grown by molecular beam epitaxy. The diode devices are fabricated in a fully planar technology using selective oxygen implantation for lateral isolation. The diode's cut-off frequencies are in the THz-range  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号