首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both adenosine A1 and A2 receptor populations are located in the striatum and can modify locomotor activity, and they may form a therapeutic target for Parkinson's disease (PD). Administration of the selective adenosine A2A antagonist (E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-pu rine-2,6-dione (KW-6002) to MPTP-treated common marmosets increased locomotor activity. In contrast, administration of the selective A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxantine (DPCPX) had no effect on locomotion. Administration of the adenosine A2A receptor agonist 2-[p-[2-(2-aminoethylamino) carbonylethyl] phenethyl amino]-5'-N-ethylcarboxamidoadenosine (APEC) dose dependently suppressed basal locomotor activity. A minimally effective dose of APEC (0.62 mg/kg, i.p) completely reversed the increase in locomotor activity produced by administration of KW-6002. The adenosine A2A receptor appears to be an important target for the treatment of basal ganglia disorders, particularly PD.  相似文献   

2.
Previous studies [Meller et al. (1990) Mol. Pharmacol., 37:231-237] have shown that a large receptor reserve exists for the inhibition of serotonin synthesis in rat cortex and hippocampus by the 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT), whereas little or no reserve exists for the lower efficacy agonists ipsapirone and BMY 7378. The current studies were undertaken to determine if the above drugs exhibit similar relative efficacies and receptor reserves in an electrophysiological model of 5-HT1A receptor activation, i.e., the inhibition of dorsal raphe cell firing. Intravenous dose-response curves were constructed in untreated control rats, or in rats which received an injection of the irreversible receptor inactivator N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ, 6 mg/kg, s.c.) 24 hours before recording. All three drugs fully inhibited dorsal raphe cell firing in control rats (ED50's: 1.5 micrograms/kg, 8-OH-DPAT; 30.0 micrograms/kg, ipsapirone; 17.5 micrograms/kg, BMY 7378). However, unlike effects on serotonin synthesis, EEDQ treatments caused no depression of the maximal inhibitory response for any of the agonists, although all dose-response curves were shifted to the right (ED50's: 10.1 micrograms/kg, 6.7-fold shift, 8-OH-DPAT; 139.9 micrograms/kg, 4.7-fold shift, ipsapirone; 53.8 micrograms/kg, 3.1-fold shift, BMY 7378). Although the order of agonist efficacies was similar for both inhibition of serotonin synthesis and dorsal raphe cell firing (8-OH-DPAT > ipsapirone > BMY 7378), a large (> 50%) receptor reserve was estimated for all three drugs in this electrophysiological system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Rats were trained to discriminate 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 0.1 mg/kg i.p.) or 5-methoxy-N,N-dimethyltryptamine (5-OMe-DMT, 1.25 mg/kg i.p.), a selective and nonselective 5-hydroxytryptamine1A (5-HT, serotonin) receptor agonist, respectively, from saline in a two-lever procedure. The selective 5-HT1A receptor agonist ipsapirone substituted completely for 8-OH-DPAT (ED50, 1.52 mg/kg) and 5-OMe-DMT substituted partially for 8-OH-DPAT, whereas 8-OH-DPAT (ED50, 0.07 mg/kg) and ipsapirone (ED50, 4.15 mg/kg) substituted completely for 5-OMe-DMT. These results suggest that the discriminative stimulus properties of both 8-OH-DPAT and 5-OMe-DMT are 5-HT1A receptor mediated, although 5-OMe-DMT may involve an additional interaction with other 5-HT receptor subtypes. 5-OMe-DMT substituted for 8-OH-DPAT after application in the lateral ventricle (ED50, 3.0 micrograms/rat) and the dorsal raphe nucleus (DRN, 1.1 micrograms/rat). After application in the DRN (ED50 range, 1.4-5.0 micrograms/rat) and the median raphe nucleus (2.3 micrograms/rat), and after bilateral application into the CA-4 region of the dorsal hippocampus (4.1 micrograms/rat), 8-OH-DPAT also produced responding on the 8-OH-DPAT lever. Ipsapirone also substituted for 8-OH-DPAT after application into the DRN and the hippocampus (ED50S, 38 and 62 micrograms/rat, respectively). The 5-HT1A mixed agonist-antagonist (1-(2-methoxyphenyl) 4-[4-(2-pthalimido)butyl]piperazine, i.p. NAN-190) attenuated the discriminative stimulus effects of 8-OH-DPAT injected i.p. (0.1 mg/kg), into the DRN (10 micrograms) or into the hippocampus (2 x 10 micrograms).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
5-Chloro-7-trifluoromethyl-1,4-dihydro-2,3-quinoxalinedione (ACEA-1011) has analgesic properties in animal models of tonic pain. To investigate the mechanisms underlying this effect we used electrical recording techniques to characterize the in vitro pharmacology of ACEA-1011 at mammalian glutamate receptors. Two preparations were used: Xenopus oocytes expressing rat brain receptors and cultured rat cortical neurons. Results showed that ACEA-1011 is a competitive antagonist at NMDA receptor glycine sites. Apparent antagonist affinities (Kb values) were 0.4 to 0.8 microM in oocytes and approximately 0.6 microM in neurons. IC50 values for ACEA-1011 against four binary subunit combinations of cloned rat NMDA receptors (NR1A/NR2A, 2B, 2C or 2D) ranged from 0.4 to 8 microM (1 microM glycine). The 20-fold variation in sensitivity was due to a combination of subunit-dependent differences in glycine and antagonist affinities; EC50 values for glycine ranged between 0.08 to 0.8 microM and Kb values for ACEA-1011 between 0.2 to 0.8 microM. In addition, ACEA-1011 inhibited AMPA-preferring non-NMDA receptors by competitive antagonism at glutamate binding sites. Kb values were 4 to 9 microM in oocytes and 9 to 10 microM in neurons. The ED50 for ACEA-1011 in a mouse maximum electroshock-induced seizure model was approximately 12 mg/kg i.v.. Our results indicate that ACEA-1011 is a systemically active broad selectivity ionotropic glutamate receptor antagonist.  相似文献   

5.
DOM [i.e., 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane] is a 5-HT1C/2 serotonin agonist that exerts stimulus control of behavior in animals. In order to determine if the discriminative stimulus effect of DOM is 5-HT1C- or 5-HT2-mediated, it would be informative to conduct tests of stimulus antagonism with a 5-HT1C- or 5-HT2-selective antagonist. To date, no such agents exist. Although the neuroleptic agent spiperone binds at D2 dopamine receptors and 5-HT1A serotonin receptors, (a) it displays about a 1000-fold selectivity for 5-HT2 versus 5-HT1C sites and (b) it has been used as a "5-HT2-selective" antagonist. Because spiperone is a behaviorally disruptive agent, it is not suitable for use in drug-discrimination studies. Using the spiperone molecule as a starting point, a limited structure-affinity investigation was conducted in order to identify a suitable antagonist with high affinity and selectivity for 5-HT2 receptors, and yet an antagonist that might lack the disruptive actions of spiperone. Various modifications of the spiperone molecule were examined, but most resulted in decreased 5-HT2 affinity or in loss of selectivity. One compound, 8-[3-(4-fluorophenoxy)propyl]-1-phenyl-1,3,8-triazaspiro[4.5]de can-4-on e (26), was shown to bind at 5-HT2 sites with high affinity (Ki = 2 nM) and > 2,000-fold selectivity versus 5-HT1C sites. In tests of stimulus antagonism using rats trained to discriminate 1 mg/kg of DOM from saline vehicle, 26 behaved as a potent antagonist (ED50 = 0.003 mg/kg) and lacked the disruptive effects associated with spiperone. As such, (a) it would appear that the DOM stimulus is primarily a 5-HT2-mediated, and not 5-HT1C-mediated, phenomenon, and (b) compound 26 may find application in other pharmacologic investigations where spiperone may not be a suitable antagonist.  相似文献   

6.
Cholecystokinin-octapeptide (CCK8) administered intraperitoneally (i.p.) in rats induces a rapid elevation in serum oxytocin (OT). The receptor subtype mediating this action of CCK was investigated with selective CCK-A and CCK-B receptor agonists and antagonists. CCK8 and A-71623, a potent CCK-A selective agonist, were similar in efficacy and potency for stimulating OT secretion. Both compounds at 10 nmol/kg elicited approximately one-half the response of 100 nmol/kg, which elevated serum OT to approx. 20 to 30-fold above basal level. The potent CCK-B selective agonist, A-63387, at doses up to 100 nmol/kg did not increase serum OT. MK-329, a CCK-A receptor selective antagonist, at a dose of 20 nmol/kg fully inhibited the action of 20 nmol/kg CCK8, while 100 nmol/kg of (R)L-365,260, a CCK-B selective antagonist, had no effect on the CCK8 response. These results, together with previous lesion studies, suggest that vagal CCK-A receptors in the periphery mediate the activation of the oxytocinergic pathway in vivo.  相似文献   

7.
The effects of buprenorphine (BNP, 10-200 micrograms/kg, i.v.) and pentazocine (PTZ, 2.5-10 mg/kg, i.v.) on the regional cerebral metabolic rate for glucose (rCMRglc) were analyzed in nine anatomically discrete areas of the conscious rat brain by the simultaneous use of [14C]2-deoxyglucose, the glucose analogue that can be phosphorylated in the brain, and [3H]3-O-methylglucose, a nonmetabolizable glucose analogue. Originally, this method was developed by Gjedde and Diemer in the rat and in humans. The rCMRglc was significantly decreased by BNP (100 or 200 micrograms/kg) in most of the brain regions investigated, except the cerebellum. In contrast, PTZ (10 mg/kg) significantly increased rCMRglc in the cerebral cortex and medulla. In the cerebral cortex and medulla, the direction of the effect on rCMRglc was opposite for BNP (22% decrease at the dose of 200 micrograms/kg) and PTZ (22% increase at the dose of 10 mg/kg). These findings strongly suggest that the discrepancies between the marked effects of BNP (a partial mu agonist and kappa antagonist) and PTZ (a mu antagonist and kappa agonist) on rCMRglc reflect the selectivity of agonist action at the different types of opioid receptors, mu and kappa receptors, in the rat brain.  相似文献   

8.
Using in vivo extracellular recordings, we have examined the effect of the application of the prototypical 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), on the firing rate of locus coeruleus neurons. 8-OH-DPAT (1 microgram/kg, i.v.) did not modify the basal activity of the locus coeruleus but shifted to the left the dose-response curve for the clonidine induced inhibition of firing rate and reduced the corresponding ED50 by 77%. 2-[2-[4-(o-methoxyphenyl)piperazin-1-yl]ethyl]-4,4-dimethyl-1,3(2H ,4H)-isoquinolinedione (ARC 239; 75 micrograms/kg, i.v.), and chlorpromazine (75 micrograms/kg, i.v.) also shifted to the left the dose-response curve for clonidine and reduced by 38 and 46%, respectively, the ED50, while slightly increasing the basal firing rate. The results indicated that 5-HT1A receptors may modulate the responses mediated by alpha 2A-adrenoceptors in the locus coeruleus.  相似文献   

9.
The locomotor stimulatory effects of the dopamine D1 receptor partial agonist SKF 38393 were examined in male C57B1/6J mice. Non-habituated mice showed marked dose-related (3-300 mg/kg, SC) locomotor stimulation. The time-course effect was biphasic at very high doses (100-300 mg/kg), with dose-related locomotor depression followed by dose-related long-term hyperlocomotion. For all doses, locomotor effects were detectable throughout the 4-h test period. To determine whether these effects were mediated by D1 receptor stimulation, effects of SKF 38393 were assessed in combination with behaviorally inactive and active doses (0.1 and 0.2 mg/kg, respectively) of the selective D1 receptor antagonist SCH 39166. Both doses of SCH 39166 attenuated the hyperlocomotion induced by 30 mg/kg of the agonist to a similar degree. However, neither dose was able to reverse either the depressant or the stimulatory effects of 300 mg/kg SKF 38393. These results demonstrate effects of the prototypical D1 agonist previously unobserved, and raise questions concerning the nature of agonist/antagonist interactions at the D1 receptor subtype.  相似文献   

10.
Despite significant progress in understanding of the potential of adenosine A1 receptor-based therapies in treatment of cerebral ischemia and stroke, very little is known about the effect of selective stimulation of adenosine A2A receptors on the outcome of a cerebrovascular arrest. In view of a major role played by adenosine A2 receptors in the regulation of cerebral blood flow, we have investigated the effect of both acute and chronic administration of the selective adenosine receptor agonist 2-[(2-aminoethylamino)-carbonylethylphenylethylamino]-5'-N- ethylcarboxoamidoadenosine (APEC) and antagonist 8-(3-chlorostyryl)caffeine (CSC) on the outcome of 10 min ischemia in gerbils. Acute treatment with APEC improved recovery of postischemic blood flow and survival without affecting neuronal preservation in the hippocampus. Acute treatment with CSC had no effect on the cerebral blood flow but resulted in a very significant protection of hippocampal neurons. Significant improvement of survival was present during the initial 10 days postischemia. Due to subsequent deaths of animals treated acutely with CSC, the end-point mortality (14 days postischemia) in this group did not differ statistically from that seen in the controls. It is, however, possible that the late mortality in the acute CSC group was caused by the systemic effects of brain ischemia that are not subject to the treatment with this drug. Chronic treatment with APEC resulted in a statistically significant improvement in all studied measures. Although chronic treatment with CSC improved postischemic blood flow, its effect on neuronal preservation was minimal and statistically insignificant. Mortality remained unaffected. The results indicate that the acute treatment with adenosine A2A receptor antagonists may have a limited value in treatment of global ischemia. However, since administered CSC has no effect on the reestablishment of postischemic blood flow, treatment of stroke with adenosine A2A receptor antagonists may not be advisable. Additional studies are necessary to elucidate whether chronically administered drugs acting at adenosine A2 receptors may be useful in treatment of stroke and other neurodegenerative disorders.  相似文献   

11.
Prostaglandin E2 (PGE2) is an endogenous hormone of adrenal zona glomerulosa cells and is released in response to stimulation by agonists such as angiotensin II (Ang II). It stimulates the release of aldosterone from cultured bovine adrenal zona glomerulosa cells. These studies were designed to determine whether this steroidogenic effect of PGE2 was mediated by an EP1, EP2, or EP3 receptor. Prostaglandin E2 and 11-deoxy PGE1, an EP2-selective agonist, stimulated aldosterone release in a concentration-related manner with an ED50 of 300 nmol/L for PGE2 and 2 micromol/L for 11-deoxy PGE1. The maximal effect of PGE2 was less than that of angiotensin II. 17-Phenyl trinor PGE2, an EP1-selective agonist, required concentrations of 100 micromol/L to stimulate aldosterone release and sulprostone, an EP3/EP1-selective agonist, failed to alter aldosterone release. The EP1-selective antagonist SC19220 failed to alter basal or PGE2-stimulated aldosterone release over a range of concentrations. PGE2 and 11-deoxy PGE1 also stimulated an increase in both intracellular and extracellular cAMP. This increase was time- and concentration-related. The ED50 for PGE2 was 9.8 micromol/L. 17-Phenyl trinor PGE2 and sulprostone were without effect. Using fura-2 loaded cells, PGE2 (2 micromol/L), dibutyryl cAMP (2 mmol/L), and Ang 11 (2 micromol/L) increased intracellular calcium over basal concentrations by 5.5-fold, 3-fold, and 6.2-fold, respectively. Like PGE2, dibutyryl cAMP also stimulated aldosterone release. PGE2- and dibutyryl cAMP-induced aldosterone release were blocked by the calcium channel inhibitor diltiazem. These studies indicate that PGE2 is a potent stimulus for aldosterone release and that the effect is mediated by EP2 receptors. Both cAMP and calcium appear to mediate the steroidogenic effect of PGE2 and calcium seems to be distal to cAMP.  相似文献   

12.
We addressed the role of muscarinic receptor subtypes in neurally mediated bronchoconstriction in vivo and airway smooth muscle contraction in vitro in the newborn dog. The in vivo dose-response effects of "selective" muscarinic antagonists on changes in lung resistance (RL) and heart rate (HR) in response to electrical stimulation of the vagus nerves were obtained in four groups of newborns. Each group was exposed to a different muscarinic antagonist: M1-selective pirenzepine (pir), M2-selective AF-DX 116 (11-[2-[(diethylamino)methyl]-1-piperidinyl]acetyl-5,11-dihydro-6H-pyrid o- [2,3-b]-[1,4]-benzodiazepine-6-one), M3-selective p-F-HHSiD (p-fluoro-hexahydro-sila-difenidol), and nonselective atropine (atr). In vitro concentration-response effects of pir and AF-DX 116 were obtained for neurally induced contractions of tracheal smooth muscle, elicited by electrical field stimulation. In a separate series of experiments we measured the bronchoconstrictor response to the muscarinic agonist acetylcholine delivered by right heart injection. Muscarinic antagonists reduced RL and HR responses to vagal stimulation in a dose-dependant fashion; however, ED50 values and selectivity for airway and cardiac responses (HR/RL ED50 ratio) were significantly different between antagonists. The rank order of potencies for inhibition of the increase in RL was atr > pir, M1 > p-F-HHSiD, M3 > AF-DX 116, M2, while that for HR was atr > AF-DX 116 > pir > p-F-HHSiD. AF-DX 116 preferentially inhibited the HR response, as reflected by the lowest HR/RL ED50 ratio (p < 0.001). The remaining antagonists preferentially inhibited RL, with the highest HR/RL ED50 ratio seen for p-F-HHSiD. These data suggest that muscarinic receptor subtypes are differentiated at birth and mediate cardiac and airway responses to vagal stimulation. We did not find autoinhibitory actions of airway M2 receptors on either the in vivo bronchoconstrictor response or the in vitro contractile response to electrical field stimulation. This suggests that neonatal airway M2 receptors, but not myocardial M2 receptors, are reduced in number or weakly coupled to muscarinic signal transduction mechanisms. Direct activation of airway smooth muscle by acetylcholine caused dose-dependent increases in RL that reached a plateau at approximately 200% at 100 micrograms, similar to values reported for vagal stimulation.  相似文献   

13.
The effects of intracerebroventricular administration of dynorphin A(1-13) on scopolamine- and pirenzepine-induced amnesia were investigated in mice by observing the step-down-type passive avoidance response and spontaneous alternation performance. The pre- or post-training, or preretention administration of dynorphin A(1-13) (0.3-10 micrograms) alone failed to affect the passive avoidance response, while scopolamine (1 mg/kg) significantly inhibited it. Dynorphin A(1-13) (1 microgram) given 15 min before training and retention tests, but not immediately after training, significantly improved the scopolamine (1 mg/kg)-induced impairment of passive avoidance response, indicating the anti-amnesic effects of dynorphin A(1-13). A lower dose (1 mg/kg) of the kappa-opioid receptor antagonist (-)-(1R,5R,9R)-5,9-diethyl-2-(3-furyl-methyl)-2'-hydroxy-6,7-benzomorpha n reversed the anti-amnesic effects of dynorphin A(1-13) (1 microgram). In contrast, although dynorphin A(1-13) (1, 3 and 10 micrograms) did not influence spontaneous alternation performance, scopolamine (1 mg/kg) and the muscarinic M1 receptor antagonist pirenzepine (3 micrograms) markedly decreased spontaneous alternation performance. Dynorphin A(1-13) (3, 5.6 and/or 10 micrograms) significantly improved the scopolamine (1 mg/kg)- and pirenzepine (3 micrograms)-induced impairment of spontaneous alternation performance. The improving effects of dynorphin A(1-13) (3 micrograms) were almost completely reversed by pretreatment with nor-binaltorphimine (4 micrograms), a kappa-selective opioid receptor antagonist. These results suggest that the stimulation of kappa-opioid receptors improves memory dysfunctions resulting from the blockade of muscarinic M1 receptors.  相似文献   

14.
The present study describes the pharmacological profile of ((E)-alpha-[[1-butyl-5-[2-[(2-carboxyphenyl)methoxy]-4-methoxy-phenyl ]-1H-pyrazol-4-yl]methlene]-6-methoxy-1,3-benzodioxole-5-propanoic acid) (SB 234551), a high-affinity, nonpeptide endothelin type A (ETA)-selective receptor antagonist. In human cloned ETA and endothelin type B (ETB) receptors, SB 234551 produced a concentration-dependent displacement of [125I]-endothelin-1 with Ki values of 0.13 and 500 nM, respectively. SB 234551 elicited concentration-dependent, rightward competitive shifts in the endothelin-1 concentration-response curves in isolated rat aorta and isolated human pulmonary artery (ETA receptor-mediated vascular contraction) with Kb values of 1.9 and 1.0 nM, respectively. SB 234551 antagonized ETB receptor-mediated vasoconstriction in the isolated rabbit pulmonary artery, as demonstrated by concentration-dependent, rightward shifts in the sarafotoxin S6c concentration-response curves (Kb = 555 nM). SB 234551 produced weak functional inhibition of sarafotoxin S6c-mediated endothelium-dependent relaxation (IC50 = 7 microM). SB 234551 (10 microM) had no significant effect against contraction produced by several other vasoactive agents and did not significantly influence radioligand binding to a number of diverse receptors. SB 234551 (0. 1-1.0 mg/kg i.v.) dose-dependently inhibited the pressor response to exogenous endothelin-1 in conscious rats. In vivo pharmacokinetic analysis in the rat demonstrated that SB 234551 was rapidly absorbed from the GI tract with a bioavailability of 30%. SB 234551 had a plasma half-life of 125 min and a systemic clearance of 25.0 ml/min/kg. The present study demonstrates that SB 234551 is an antagonist with high affinity for the ETA receptor, while sparing the ETB receptor. SB 234551 is a new pharmacological tool that should assist in the elucidation of the role of endothelin in pathophysiology.  相似文献   

15.
The present study investigated the effects of the cannabinoid receptor agonist CP 55,940 (1-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl) phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol) and the cannabinoid receptor antagonist SR 141716A (N-(piperidin-l-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1 H-pyrazole-3-carboxamide hydrochloride) on ultrasonic vocalizations, body temperature and activity in 11-13-day-old rat pups. Testing occurred in a 5-min session 30 min following drug administration. CP 55,940 produced a dose-dependent decrease in ultrasonic vocalizations, with a 1000-micrograms/kg dose causing an almost complete inhibition of calls. Doses of 100 and 1000 micrograms/kg of CP 55,940, but not 10 micrograms/kg, caused significant hypothermia in the pups and the 1000 micrograms/kg dose also inhibited activity. The cannabinoid receptor antagonist SR 141716A (20 mg/kg) reversed the effects of 1000 micrograms/kg CP 55,940 on ultrasonic vocalizations and body temperature, but the benzodiazepine receptor antagonist flumazenil (20 mg/kg), the dopamine D1 receptor antagonist SCH 23390 (0.5 mg/kg) and the opioid receptor antagonist naloxone (1 mg/kg) did not. When administered alone, SR 141716A (20 mg/kg) increased pup ultrasonic vocalizations without affecting body temperature or activity. These results indicate that cannabinoids modulate ultrasonic vocalization production in rat pups in a manner that is independent of hypothermia. The increase in ultrasonic vocalizations produced by SR 141716A is one of the first reported behavioural effects of this drug and suggests that the endogenous cannabinoid ligand anandamide may be involved in the regulation of ultrasonic vocalizations.  相似文献   

16.
Previously established dose-response curves indicated that modafinil 20-40 mg/kg i.p. elicited in mice an obvious stimulation of locomotor activity roughly similar to that induced by (+)amphetamine 2-4 mg/kg. The effects of various agents modifying dopamine transmission were compared on the locomotor response to both drugs. The preferential D2 dopamine receptor antagonist haloperidol 37.5-150 micrograms/kg i.p. suppressed the stimulant effect of (+)amphetamine in a dose dependent manner, but not that of modafinil. The D1 dopamine receptor antagonist SCH 23390 (7.5-30 micrograms/kg s.c.) reversed the (+)amphetamine but not the modafinil induced hyperactivity. The tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine (200 mg/kg) suppressed the hyperactivity induced by 4 mg/kg dexamphetamine but not that induced by 20 mg/kg modafinil. Associating L-DOPA 150 mg/kg and benserazide 37.5 mg/kg with (+)amphetamine 2 mg/kg resulted in stereotyped climbing behavior, that was not observed with modafinil 10-80 mg/kg. The profound akinesia induced by reserpine (4 mg/kg s.c.; 5 h before testing) was reversed by (+)amphetamine 2 mg/kg but not by modafinil 40 mg/kg. Finally, on synaptosomes prepared from mouse striata preloaded with [3H]dopamine, modafinil 10(-5) M did not increase the spontaneous [3H]dopamine release whereas (+)amphetamine, at the same concentration, doubled it. From all these differences between the two drugs, it is concluded that the mechanism underlying the modafinil induced stimulant locomotor effect differs completely from that of (+)amphetamine.  相似文献   

17.
In vivo microdialysis was used to compare the effects of serotonergic drugs on morphine- and cocaine-induced increases in extracellular dopamine (DA) concentrations in the rat nucleus accumbens (NAc). Systemic administration of the 5-HT2A/2C agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (2.5 mg/kg, s.c. ) prevented the increase in extracellular DA in the NAc produced by morphine (5 mg/kg, i.p.). In contrast, this dose of DOI had no effect on the ability of cocaine (10 mg/kg, i.p.) to increase extracellular DA concentrations in the NAc. A 5-HT2C selective agonist, 6-chloro-2-[1-piperazinyl]-pyrazine (MK-212, 5 mg/kg, s.c.) also inhibited morphine-induced increases in extracellular DA concentrations in the NAc. Pretreatment of rats with the selective 5-HT2A antagonist, amperozide, had no effect on morphine-induced elevation of NAc DA concentrations. In order to determine if inhibition of the firing of 5-HT neurons contributes to the serotonin agonist-mediated inhibition of morphine-induced accumbens DA release, rats were pretreated with the 5-HT1A agonist, 8-OHDPAT. At a dose of 100 microg/kg (sc), 8-OHDPAT did not interfere with morphine's ability to increase DA concentrations in the NAc. These results suggest that the activation of 5-HT2C receptors selectively inhibits morphine-induced DA release in the NAc in a manner which is independent of the inhibition of 5-HT neurons.  相似文献   

18.
The novel benzoindane S 18126 possessed > 100-fold higher affinity at cloned, human (h) D4 (Ki = 2.4 nM) vs. hD2 (738 nM), hD3 (2840 nM), hD1 (> 3000 nM) and hD5 (> 3000 nM) receptors and about 50 other sites, except sigma1 receptors (1.6 nM). L 745,870 similarly showed selectivity for hD4 (2.5 nM) vs. hD2 (905 nM) and hD3 (> 3000 nM) receptors. In contrast, raclopride displayed low affinity at hD4 (> 3000 nM) vs. hD2 (1.1 nM) and hD3 receptors (1.4 nM). Stimulation of [35S]-GTPgammaS binding at hD4 receptors by dopamine (DA) was blocked by S 18126 and L 745,870 with Kb values of 2.2 and 1.0 nM, respectively, whereas raclopride (> 1000 nM) was inactive. In contrast, raclopride inhibited stimulation of [35S]-GTPgammaS binding at hD2 sites by DA with a Kb of 1.4 nM, whereas S 18126 (> 1000 nM) and L 745,870 (> 1000 nM) were inactive. As concerns presynaptic dopaminergic receptors, raclopride (0.01-0.05 mg/kg s.c. ) markedly enhanced DA synthesis in mesocortical, mesolimbic and nigrostriatal dopaminergic pathways. In contrast, even high doses (2. 5-40.0 mg/kg s.c.) of S 18126 and L 745,870 were only weakly active. Similarly, raclopride (0.016 mg/kg i.v.) abolished inhibition of the firing rate of ventrotegmental dopaminergic neurons by apomorphine, whereas even high doses (0.5 mg/kg i.v.) of S 18126 and L 745,870 were only weakly active. As regards postsynaptic dopaminergic receptors, raclopride potently (0.01-0.3 mg/kg s.c.) reduced rotation elicited by quinpirole in rats with unilateral lesions of the substantia nigra, antagonized induction of hypothermia by PD 128, 907, blocked amphetamine-induced hyperlocomotion and was effective in six further models of potential antipsychotic activity. In contrast, S 18126 and L 745,870 were only weakly active in these models (5.0-> 40.0 mg/kg s.c.). In six models of extrapyramidal and motor symptoms, such as induction of catalepsy, raclopride was likewise potently active (0.01-2.0 mg/kg s.c.) whereas S 18126 and L 745,870 were only weakly active (10.0-80.0 mg/kg s.c.). In freely moving rats, raclopride (0.16 mg/kg s.c.) increased levels of DA by + 55% in dialysates of the frontal cortex. However, it also increased levels of DA in the accumbens and striatum by 70% and 75%, respectively. In contrast to raclopride, at a dose of 0.16 mg/kg s.c. , neither S 18126 nor L 745,870 modified frontal cortex levels of DA. However, at a high dose (40.0 mg/kg s.c.), S 18126 increased dialysate levels of DA (+ 85%) and noradrenaline (+ 100%), but not serotonin (+ 10%), in frontal cortex without affecting DA levels in accumbens (+ 10%) and striatum (+ 10%). In conclusion, S 18126 and L 745,870 behave as potent and selective antagonists of cloned, hD4 vs. other dopaminergic receptor types in vitro. However, their in vivo effects at high doses probably reflect residual antagonist actions at D2 (or D3) receptors. Selective blockade of D4 receptors was thus associated neither with a modification of dopaminergic transmission nor with antipsychotic (antiproductive) or extrapyramidal properties. The functional effects of selective D4 receptor blockade remain to be established.  相似文献   

19.
Flibanserin (BIMT 17) has been described as a 5-HT1A agonist with preferential affinity for postsynaptic 5-HT1A receptors and as a 5-HT2A antagonist. Indeed, using the forskolin-stimulated cAMP accumulation technique, flibanserin but not the 5-HT1A agonists buspirone and 8-OH-DPAT had agonistic activity at postsynaptic 5-HT1A receptors in the cerebral cortex. The present in vivo electrophysiological study investigated the agonistic properties of this novel compound in pre- and postsynaptic areas of the anesthetized rat brain using local microiontophoretic application and systemic administration. The inhibition induced by either local or intravenous administration of flibanserin was current- and dose-dependent. Based on the ability of 5-HT1A antagonists to block or reverse the inhibitory action of the compound, the effect of flibanserin was shown to be mediated via 5-HT1A receptors. In addition, as determined by the concurrent microiontophoretic application of flibanserin and 5-HT, flibanserin behaved as a full agonist in the dorsal raphe nucleus (DRN) and the medial prefrontal cortex (mPFC), but as a partial agonist in the CA3 region of the hippocampus. Based on neuronal responsiveness observed with the local microiontophoretic application of flibanserin, it was found that the agonist was most potent on 5-HT1A receptors in the hippocampus, followed by the mPFC and DRN (I.T50 values: 260, 1,260, and 1,365 nanocoulombs, respectively). However, based on the ED50 values obtained from intravenous administration of the drug, flibanserin was most potent in the DRN followed by the hippocampus and mPFC (ED50 values: 239, 1,414, and 2,984 micrograms/kg, respectively). Therefore, flibanserin presented a marked selectivity for postsynaptic 5-HT1A receptors when applied locally, but not when administered intravenously. It remains to be determined if flibanserin preferentially activates postsynaptic 5-HT1A receptors upon sustained systemic administration.  相似文献   

20.
1. Effects of substances which are able to alter brain histamine levels and two histamine H1 receptor agonists were investigated in mice by means of an animal model of depression, the forced swim test. 2. Imipramine (10 and 30 mg kg(-1), i.p.) and amitriptyline (5 and 15 mg kg(-1), i.p.) were used as positive controls. Their effects were not affected by pretreatment with the histamine H3 receptor agonist, (R)-alpha-methylhistamine, at a dose (10 mg kg(-1), i.p.) which did not modify the cumulative time of immobility. 3. The histamine H3 receptor antagonist, thioperamide (2-20 mg kg(-1), s.c.), showed an antidepressant-like effect, with a maximum at the dose of 5 mg kg(-1), which was completely prevented by (R)-alpha-methylhistamine. 4. The histamine-N-methyltransferase inhibitor, metoprine (2-20 mg kg(-1), s.c.), was effective with an ED50 of 4.02 (2.71-5.96) mg kg(-1); its effect was prevented by (R)-alpha-methylhistamine. 5. The histamine precursor, L-histidine (100-1000 mg kg(-1), i.p.), dose-dependently decreased the time of immobility [ED30 587 (499-712) mg kg(-1)]. The effect of 500 mg kg(-1) L-histidine was completely prevented by the selective histidine decarboxylase inhibitor, (S)-alpha-fluoromethylhistidine (50 mg kg(-1), i.p.), administered 15 h before. 6. The highly selective histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl)histamine (0.3-6.5 microg per mouse, i.c.v.), and the better known H1 agonist, 2-thiazolylethylamine (0.1-1 microg per mouse, i.c.v.), were both dose-dependently effective in decreasing the time of immobility [ED50 3.6 (1.53-8.48) and 1.34 (0.084-21.5) microg per mouse, respectively]. 7. None of the substances tested affected mouse performance in the rota rod test at the doses used in the forced swim test. 8. It was concluded that endogenous histamine reduces the time of immobility in this test, suggesting an antidepressant-like effect, via activation of H1 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号