首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental investigation on R134a vapour ejector refrigeration system   总被引:6,自引:1,他引:5  
The experimental investigation of the performance of a vapour ejector refrigeration system is described. The system uses R134a as working fluid and has a rated cooling capacity of 0.5 kW. The influence of generator, evaporator and condenser temperatures on the system performance is studied. This kind of system can be operated with low grade thermal energy such as solar energy, waste heat, etc. The operating conditions are chosen accordingly as, generator temperature between 338 K and 363 K, condenser temperature between 299 K and 310.5 K, and evaporator temperature between 275 K and 285.5 K. Six configurations of ejectors of different geometrical dimensions are selected for the parametric study. The performance of the refrigeration system at different operating temperatures is presented.  相似文献   

2.
CFD analysis of ejector in a combined ejector cooling system   总被引:5,自引:1,他引:5  
One-dimensional ejector analyses often use coefficients derived from experimental data for a set of operating conditions with limited functionality. In this study, several ejector designs were modelled using finite volume CFD techniques to resolve the flow dynamics in the ejectors. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance outside the experimental range were also carried out. During validation, data from CFD predicted the entrainment ratios with greater accuracy on definite area ratios, although no shock was recorded in the ejector. Predictions outside the experimental range—at operating conditions in a combined ejector–vapour compression system—and flow conditions resulting from ejector geometry variations are discussed. It is found that the maximum entrainment ratio happens in the ejector just before a shock occurs and that the position of the nozzle is an important ejector design parameter.  相似文献   

3.
A theoretical study of a novel regenerative ejector refrigeration cycle   总被引:1,自引:0,他引:1  
There has been a demand for developments of the ejector refrigeration systems using low grade thermal energy, such as solar energy and waste heat. In this paper, a novel regenerative ejector refrigeration cycle was described, which uses an auxiliary jet pump and a conventional regenerator to enhance the performance of the novel cycle. The theoretical analysis on the performance characteristics was carried out for the novel cycle with the refrigerant R141b. Compared with the conventional cycle, the simulation results show that the coefficient of performance (COP) of the novel cycle increases, respectively, by from 9.3 to 12.1% when generating temperature is in a range of 80–160 °C, the condensing temperature is in a range of 35–45 °C and the evaporating temperature is fixed at 10 °C. Especially due to the enhanced regeneration with increasing the pump outlet pressure, the improvement of COP of the novel cycle is approached to 17.8% compared with that in the conventional cycle under the operating condition that generating temperature is 100 °C, condensing temperature is 40 °C and evaporating temperature is 10 °C. Therefore, the characteristics of the novel cycle performance show its promise in using low grade thermal energy for the ejector refrigeration system.  相似文献   

4.
A new combined power and refrigeration cycle is proposed for the cogeneration, which combines the Rankine cycle and the ejector refrigeration cycle by adding an extraction turbine between heat recovery vapor generator (HRVG) and ejector. This combined cycle could produce both power output and refrigeration output simultaneously, and could be driven by the flue gas from gas turbine or engine, solar energy, geothermal energy and industrial waste heats. Parametric analysis and exergy analysis are conducted to examine the effects of thermodynamic parameters on the performance and exergy destruction in each component for the combined cycle. The results show that the condenser temperature, the evaporator temperature, the turbine inlet pressure, the turbine extraction pressure and extraction ratio have significant effects on the turbine power output, refrigeration output, exergy efficiency and exergy destruction in each component in the combined cycle. It is also shown that the biggest exergy destruction occurs in the heat recovery vapor generator, followed by the ejector and turbine.  相似文献   

5.
Jet-refrigeration cycles seem to provide an interesting solution to the increasing interest in environment protection and the need for energy saving due to their low plant costs, reliability and possibility to use water as operating fluid. A steam/steam ejector cycle refrigerator is investigated introducing a two-stage ejector with annular primary at the second stage. The steady_state refrigerator, exchanging heat with the water streams at inlet fixed temperatures at the three shell and tube heat exchangers, evaporator, condenser and generator, is considered as an open system. Heat transfer irreversibilities in the heat exchangers and external friction losses in the water streams are considered, ignoring the internal pressure drop of the vapor. A simulation program numerically searches the maximum COP at given external inlet fluid temperatures as a function of mass flows, dimensions and temperature differences in the heat exchangers. The code gives the ejector and heat exchangers design parameters.  相似文献   

6.
This paper discusses the conservation of energy in a cogeneration system. A steam power cycle (Rankine) produces electrical power 2 MW and steam is bleeded off from the turbine at 7 bar to warm a factory or units of buildings during the winter or to supply a steam ejector refrigeration cycle to air-conditioning the same area during the summer. In the summer this system can be as alternative solution instead of absorption. Certainly the ejector refrigeration unit is more economical than absorption unit. The ratio of electrical power/heat is varied into the region (0.1–0.4) and the evaporator temperature of the ejector cycle is varied into the region (10–16 °C). A computer program has been developed for the study of performance parameters of the cogeneration system.  相似文献   

7.
A 1-D analysis for the prediction of ejector performance at critical-mode operation is carried out in the present study. Constant-pressure mixing is assumed to occur inside the constant-area section of the ejector and the entrained flow at choking condition is analyzed. We also carried out an experiment using 11 ejectors and R141b as the working fluid to verify the analytical results. The test results are used to determine the coefficients, ηp, ηs, φp and φm defined in the 1-D model by matching the test data with the analytical results. It is shown that the1-D analysis using the empirical coefficients can accurately predict the performance of the ejectors.  相似文献   

8.
This paper presented a novel autocascade refrigeration cycle (NARC) with an ejector. In the NARC, the ejector is used to recover some available work to increase the compressor suction pressure. The NARC enables the compressor to operate at lower pressure ratio, which in turn improves the cycle performance. Theoretical computation model based on the constant pressure-mixing model for the ejector is used to perform a thermodynamic cycle analysis for the NARC with the refrigerant mixture of R23/R134a. The effects of some main parameters on cycle performance were investigated. The results show the NARC has an outstanding merit in decreasing the pressure ratio of compressor as well as increasing the COP. For NARC operated at the condenser outlet temperature of 40 °C, the evaporator inlet temperature of −40.3 °C, and the mass fraction of R23 is 0.15, the pressure ratio of the ejector reaches to 1.35, the pressure ratio of compressor is reduced by 25.8% and the COP is improved by 19.1% over the conventional autocascade refrigeration cycle.  相似文献   

9.
In this study, an improved cooling cycle for a conventional multi-evaporators simple compression system utilizing ejector for vapour precompression is analyzed. The ejector-enhanced refrigeration cycle consists of multi-evaporators that operate at different pressure and temperature levels. A one-dimensional mathematical model of the ejector was developed using the equations governing the flow and thermodynamics based on the constant-area ejector flow model. The model includes effects of friction at the constant-area mixing chamber. The energy efficiency and the performance characteristics of the novel cycle are theoretically investigated. The comparison between the novel and conventional system was made under the same operating conditions. Also, a comparison of the system performances with environment friendly refrigerants (R290, R600a, R717, R134a, R152a, and R141b) is made. The theoretical results show that the COP of the novel cycle is better than the conventional system.  相似文献   

10.
This paper is a part in a series that reports on the experimental study of the performance of the two-phase ejector expansion refrigeration cycle. In the present study, three two-phase ejectors are used as an expansion device in the refrigeration cycle. The effects of throat diameter of the motive nozzle, on the coefficient of performance, primary mass flow rate of the refrigerant, secondary mass flow rate of the refrigerant, recirculation ratio, average evaporator pressure, compressor pressure ratio, discharge temperature and cooling capacity, which have never before appeared in open literature, are presented. The effects of the heat sink and heat source temperatures on the system performance are also discussed.  相似文献   

11.
Ejector efficiencies for the primary nozzle, suction, mixing and diffuser were determined for the first time, according to their definitions, using an axi-symmetric CFD model. Water was considered as working fluid and the operating conditions were selected in a range that would be suitable for an air-conditioner powered by solar thermal energy. Ejector performance was estimated for different nozzle throat to constant section area ratios. The results indicated the existence of an optimal ratio, depending on operating conditions. Ejector efficiencies were calculated for different operating conditions. It was found that while nozzle efficiency can be considered as constant, the efficiencies related to the suction, mixing and diffuser sections of the ejector depend on operating conditions.  相似文献   

12.
Development of an ejector cooling system with thermal pumping effect   总被引:1,自引:1,他引:1  
This paper presents a feasibility study of an ejector cooling system (ECS) that utilizes a multi-function generator (MFG) to eliminate the mechanical pump. The MFG serves as both a pump and a vapor generator. The MFG is designed based on the pressure equilibration between high and low pressures through heating and cooling process. In this design, an ECS that contains no moving components and is entirely powered by heat can be practicable. A prototype using refrigerant R141b as working fluid was constructed and tested in the present study. The experimental results showed that the system coefficient of performance (COPo) was 0.218 and the cooling capacity was 0.786 kW at generating temperature (TG) 90 °C, condensing temperature (TC) 32.4 °C and evaporating temperature (TE) 8.2 °C. While taking into account the extra heat needed for the MFG operation, the total coefficient of performance (COPt) is 0.185. It is shown that a continuous operation for the generation of cooling effect in an ECS with MFG can be achieved. This cooling machine can be very reliable since there is no moving part.  相似文献   

13.
Solar refrigeration options – a state-of-the-art review   总被引:1,自引:0,他引:1  
A state-of-the-art review is presented of the different technologies that are available to deliver refrigeration from solar energy. The review covers solar electric, solar thermal and some new emerging technologies. The solar thermal systems include thermo-mechanical, absorption, adsorption and desiccant solutions. A comparison is made between the different solutions both from the point of view of energy efficiency and economic feasibility. Solar electric and thermo-mechanical systems appear to be more expensive than thermal sorption systems. Absorption and adsorption are comparable in terms of performance but adsorption chillers are more expensive and bulkier than absorption chillers. The total cost of a single-effect LiBr–water absorption system is estimated to be the lowest.  相似文献   

14.
Various field-test systems using carbon dioxide as the only refrigerant have been installed since December 2001. In this paper we will analyse an ‘all-CO2’ supermarket, which has been operating in the North of Italy since January 2003.The seasonal COP is calculated, based on prior laboratory measurements, and a comparison is made with a conventional direct expansion system using R404A.The total annual energy consumption of the installed CO2 system is estimated to be about 10% higher than the direct expansion R404A solution. It is still possible to further improve efficiency and approach the efficiency of present R404A systems. These improvements are identified.The cost of the CO2 installation is compared to the cost of an equivalent direct expansion R404A installation, the most economic among the various present types of commercial refrigeration systems. Because of the lack of suitable mass-produced components, the CO2 installation is estimated to be, today, about 20% more expensive.  相似文献   

15.
Development of a circulating system for a jet refrigeration cycle   总被引:1,自引:0,他引:1  
This paper proposed a workless-generator-feeding (WGF) system for a jet refrigeration cycle, using R141b. This feeding system does not require any mechanical power. The liquid refrigerant from the condenser was fed to the vapour-generator by means of the generator pressure and gravitational force. The system was tested and compared with a conventional system using a mechanical pump. It was found that this system was workable. The heat input to the generator was slightly higher than that for a system using a mechanical pump. The jet refrigeration cycle employing this new feeding system provided a slightly lower coefficient of performance (COP) compared to a system using a mechanical pump. However, this new system did not require any mechanical energy. Therefore, the jet refrigeration system employing this WGF system is truly a heat-power refrigeration cycle.  相似文献   

16.
The occurrence of flow choking in an ejector of an ejector refrigeration system (ERS) was analysed and a model for predicting the maximum flow ratio of the ejector was developed. The multi-parameter equation to calculate the mass flow ratio takes into account the performance of the primary nozzle, the flow entrainment and mixing relating to ejector geometry and operating conditions. We validated the model using the reported experimental data of refrigerant R113, R141b and steam ERS. The present model was shown to provide better accuracy compared with results obtained by applying the existing 1-D ejector theory. We discussed the application of the model and highlighted the significance of the parameters for future work.  相似文献   

17.
A novel experimental investigation of a solar cooling system in Madrid   总被引:3,自引:2,他引:3  
This paper reports novel experimental results derived through field testing of a part load solar energized cooling system for typical Spanish houses in Madrid during the summer period of 2003. Solar hot water was delivered by means of a 49.9 m2 array of flat-plate collectors to drive a single-effect (LiBr/H2O) absorption chiller of 35 kW nominal cooling capacity. Thermal energy was stored in a 2 m3 stratified hot water storage tank during hours of bright sunshine. Chilled water produced at the evaporator was supplied to a row of fan coil units and the heat of condensation and absorption was rejected by means of a forced draft cooling tower. Instantaneous, daily and period energy flows and energy balance in the installation is presented. System and absorption machine temperature profiles are given for a clear, hot and dry day's operation. Daily and period system efficiencies are given. Peak insolation of 969 W m−2 (at 12:30 solar time on 08/08/03) produced 5.13 kW of cooling at a solar to cooling conversion efficiency of 11%. Maximum cooling capacity was 7.5 kW. Cooling was provided for 8.67 h and the chiller required a threshold insolation of 711 W m−2 for start-up and 373 W m−2 for shut-down. A minimum hot water inlet temperature to the generator of 65 °C was required to commence cold generation, whereas at 81 °C, 6.4 kW of cooling (18.3% of nominal capacity) was produced. The absorption refrigeration machine operated within the generation and absorption temperature ranges of 57–67 and 32–36 °C, respectively. The measured maximum instantaneous, daily average and period average COP were 0.60 (at maximum capacity), 0.42 and 0.34, respectively. Energy flows in the system are represented on a novel area diagram. The results clearly demonstrate that the technology works best in dry and hot climatic conditions where large daily variations in relative humidity and dry bulb temperature prevail. This case study provides benchmark data for the assessment of other similar prototypes and for the validation of mathematical models.  相似文献   

18.
The objectives of this paper are to develop a novel cycle with refrigerant Rankine and refrigeration cycles, and to discuss the thermodynamic analysis of the cycle and the adequacy of the development. The combined cycle uses only one working fluid, has a simple mechanical system and does not have abrading parts. Three different refrigerants are evaluated to find the best candidate for the novel combined cycle—R123, R134a and R245ca. It is found that the R123 cycle gives the highest cycle efficiency among all cycles considered in the present study. The base cycle has a low efficiency because of the high temperature at the turbine outlet. By recovering the heat at the turbine outlet, the overall COP increases by 47% in case of the R245ca cycle. In the base cycle, COP depends mostly on the boiler pressure, while in the modified cycle with the recuperator, the cycle efficiency depends mostly on the boiler temperature. Considering the cycle efficiency and environmental issues, it is concluded that R245ca is the most promising refrigerant out of the cycles considered in the present paper.  相似文献   

19.
This paper presents the basic principles of the evaporative cooling process for human thermal comfort, the principles of operation for the direct evaporative cooling system and the mathematical development of the equations of thermal exchanges, allowing the determination of the effectiveness of saturation. It also presents the results of experimental tests in a direct evaporative cooler that take place in the Air Conditioning Laboratory at the University of Taubaté Mechanical Engineering Department, and the experimental results are used to determinate the convective heat transfer co-efficient and to compare with the mathematical model.  相似文献   

20.
The environmental impact of refrigeration systems can be reduced by operation at higher efficiency and reduction of refrigerant leakage. Refrigerant loss contributes both directly and indirectly to global warming through inefficient system operation, increased power consumption and greenhouse gas emissions and higher maintenance costs. Existing sensor-based leak detection methods are limited by the inability to detect gradual leakage and the need for careful sensor location. There is a requirement for a real-time performance monitoring approach to leak detection and fault diagnosis which overcomes these disadvantages.This paper reports on the development of a fault diagnosis and refrigerant leak detection system based on artificial intelligence and real-time performance monitoring. The system has been used successfully to distinguish between faulty and fault free operation, steady-state and transient operation, leakage and over charge conditions. Work currently underway is aimed at testing additional fault conditions and establishing further rules to distinguish between these patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号