共查询到20条相似文献,搜索用时 0 毫秒
1.
High level biosynthesis and secretion of the thermostable hybrid (1-3, 1-4)- beta-glucanase H(A16-M) has been achieved in Saccharomyces cerevisiae by means of the yeast vacuolar endoprotease B promoter (PRB1P) and the Bacillus macerans (1-3, 1-4)-beta-glucanase signal peptide. The N-glycans present on the yeast-secreted H(A16-M), denoted H(A16-M)-Y, were released by endoglycosidase H, and identified by proton NMR spectroscopy to be a homologous series of Man8-13GlcNAc2, although only traces of Man9GlcNAc2 were found. Therefore, processing of N-glycans on H(A16-M)-Y is similar to that on homologous proteins. Most of the N-glycans (88%) were neutral while the remainder were charged due to phosphorylation. Site-directed mutagenesis of Asn to Gln in two of the N-glycosylation sequons, and subsequent analysis of the N-glycans on the yeast-secreted proteins together with analysis of the N-glycans from the individual sites of H(A16-M)-Y suggest the presence of steric hindrance to glycan modification by the glycans themselves. H(A16-M)-Y produced under control of either the yeast protease B or the yeast 3'-phosphoglycerate kinase promoter, each in two different Saccharomyces strains revealed a dependence of N-glycan profile on both strain and culture conditions. The extent of O-glycosylation was found to be nine mannose units per H(A16-M)-Y molecule. An attempt to identify the linkage-sites for the O-glycans by amino acid sequencing failed, suggesting non-stoichiometric or heterogeneous O-glycosylation. The possible modes in which N-glycans might contribute to resistance of H(A16-M)-Y to irreversible thermal denaturation are discussed with respect to structural information available for H(A16-M)-Y. 相似文献
2.
3.
I Suominen C Ford D Stachon H Heimo M Niederauer H Nurmela C Glatz 《Canadian Metallurgical Quarterly》1993,15(7):593-600
Poly(aspartic acid) tails of different lengths were fused to the glucoamylase (GA) of Aspergillus awamori by genetic engineering techniques. Tails consisting of 5, 7, and 10 aspartate residues were fused to the N-terminus of the full-length mature GA (aa 1-616) downstream from the intact leader peptide to produce fusion proteins designated GAND5, GAND7, and GAND10, respectively. Three fusion proteins with C-terminal tails were also constructed, designated GACD0, GACD5, and GACD10 (0, 5, and 10 aspartate residues, respectively). For the C-terminal fusion proteins, the tails were fused to a catalytically active but truncated form of GA (aa 1-484). All of the charged tails had the general sequence Met-Ala-Aspn-Tyr, where n = 0, 5, 7, or 10. The modified genes were expressed in the yeast Saccharomyces cerevisiae and the proteins secreted into the culture medium. The enzymes were subsequently purified by affinity chromatography. The specific activity of each purified enzyme was found to be comparable to the wild-type enzyme. The C-terminal tails did not interfere with expression, whereas decreased extracellular glucoamylase activities corresponding to increased tail length were found for the N-terminal fusion proteins. Amino-terminal amino acid sequence analysis of the purified GAND proteins confirmed the authenticity of the amino termini of the modified proteins and showed that both the leader peptidase and KEX2 protease cleavages had occurred faithfully. The increased net negative charge of the GAND and GACD proteins was indicated by both nondenaturing PAGE and isoelectric focusing.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Cells of Saccharomyces cerevisiae were permeabilized by ether for the isolation of coenzyme NADH. A 4-fold increase in the ether fraction to aqueous fraction resulted in the recovery of 80% of total NADH present in the cell. NADH was separated and purified by affinity ultrafiltration using yeast alcohol dehydrogenase as an affinity ligand. The binding characteristics of the enzyme and coenzyme were established at different pH and ionic strengths using gel filtration. The number of moles of NADH bound per mole of alcohol dehydrogenase (r) was found to be 5.7 at pH 8 and ionic strength (I) 0.1 M. The binary complex of NADH and alcohol dehydrogenase was cleaved by lowering the pH to 6.0. The crude cell permeate on purification by ultrafiltration with 2-fold dilution, gave NADH with an absorbance ratio (A260/A340) of 2.3 and overall yield of 68%. Alcohol dehydrogenase was recovered as retentate with 93% recovery and 15% loss in activity. 相似文献
5.
BACKGROUND: With the progression of acquired immunodeficiency virus (AIDS) and human immunodeficiency virus (HIV) infection to endemic areas of cysticercosis, the simultaneous diagnosis of both diseases is an expected event. METHODS: Among 91 patients with AIDS or HIV infection studied from 1987 to 1993 at a neurologic reference center in Mexico City, 2 patients with AIDS and neurocysticercosis were found. Five previously reported cases were jointly reviewed. RESULTS: The first patient presented with increased intracranial pressure of rapid progression. A single giant cyst was surgically excised and cysticercus was confirmed on histopathologic examination. The second patient had brain toxoplasmosis and concurrent neurocysticercosis as an incidental finding. CONCLUSIONS: Neurocysticercosis in HIV infection/AIDS may appear as a life-threatening condition or as an incidental finding. All reported cases have been found in advanced stages of HIV infection. Management must be individualized depending on the clinical form of cysticercosis, stage of HIV infection, and coexisting opportunistic conditions. Surgery may be lifesaving and some patients apparently responded to cysticidal drugs. 相似文献
6.
GP Vlasuk 《Canadian Metallurgical Quarterly》1993,70(1):212-216
The discovery of rTAP has provided a wealth of important scientific information ranging from the structural and kinetic characterization of a novel serine protease inhibitor to the importance of factor Xa in the thrombotic process. The results obtained with this inhibitor thus far have broadened our understanding of hemostasis and thrombosis and ultimately may result in the development of newer and more efficient therapeutic agents to combat one of the leading causes of morbidity and mortality in man today. 相似文献
7.
In the yeast Saccharomyces cerevisiae, choline kinase (ATP:choline phosphotransferase, EC 2.7.1.32) is the product of the CKI gene. Choline kinase catalyzes the committed step in the synthesis of phosphatidylcholine by the CDP-choline pathway. The yeast enzyme was overexpressed 106-fold in Sf-9 insect cells and purified 71.2-fold to homogeneity from the cytosolic fraction by chromatography with concanavalin A, Affi-Gel Blue, and Mono Q. The N-terminal amino acid sequence of purified choline kinase matched perfectly with the deduced sequence of the CKI gene. The minimum subunit molecular mass (73 kDa) of purified choline kinase was in good agreement with the predicted size (66.3 kDa) of the CKI gene product. Native choline kinase existed in oligomeric structures of dimers, tetramers, and octomers. The amounts of the tetrameric and octomeric forms increased in the presence of the substrate ATP. Antibodies were raised against the purified enzyme and were used to identify choline kinase in insect cells and in S. cerevisiae. Maximum choline kinase activity was dependent on Mg2+ ions (10 mM) at pH 9.5 and at 30 degrees C. The equilibrium constant (0.2) for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 6.26 kcal/mol, and the enzyme was labile above 30 degrees C. Choline kinase exhibited saturation kinetics with respect to choline and positive cooperative kinetics with respect to ATP (n = 1.4-2.3). Results of the kinetic experiments indicated that the enzyme catalyzes a sequential Bi Bi reaction. The Vmax for the reaction was 138.7 micromol/min/mg, and the Km values for choline and ATP were 0.27 mM and 90 microM, respectively. The turnover number per choline kinase subunit was 153 s-1. Ethanolamine was a poor substrate for the purified choline kinase, and it was also poor inhibitor of choline kinase activity. ADP inhibited choline kinase activity (IC50 = 0.32 mM) in a positive cooperative manner (n = 1.5), and the mechanism of inhibition with respect to ATP and choline was complex. The regulation of choline kinase activity by ATP and ADP may be physiologically relevant. 相似文献
8.
JD Phillips B Guo Y Yu FM Brown EA Leibold 《Canadian Metallurgical Quarterly》1996,35(49):15704-15714
Iron-regulatory proteins (IRPs) 1 and 2 are cytosolic RNA-binding proteins that bind to specific stem-loop structures, termed iron-responsive elements (IREs) that are located in the untranslated regions of specific mRNAs encoding proteins involved in iron metabolism. The binding of IRPs to IREs regulates either translation or stabilization of mRNA. Although IRP1 and IRP2 are similar proteins in that they are ubiquitously expressed and are negatively regulated by iron, they are regulated by iron by different mechanisms. IRP1, the well-characterized IRP in cells, is a dual-function protein exhibiting either aconitase activity when cellular iron is abundant or RNA-binding activity when cellular iron is scarce. In contrast, IRP2 lacks detectable aconitase activity and functions exclusively as an RNA-binding protein. To study and compare the biochemical characteristics of IRP1 and IRP2, we expressed wild-type and mutant rat IRP1 and IRP2 in the yeast Saccharomyces cerevisiae. IRP1 and IRP2 expressed in yeast bind the IRE RNA with high affinity, resulting in the inhibition of translation of an IRE-reporter mRNA. Mutant IRP2s lacking a 73 amino acid domain unique to IRP2 and a mutant IRP1 containing an insertion of this domain bound RNA, but lacked detectable aconitase activity, suggesting that the presence of this domain prevents aconitase activity. Like IRP1, the RNA-binding activity of IRP2 was sensitive to inactivation by N-ethylmaleimide (NEM) or 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), indicating IRP2 contains a cysteine(s) that is (are) necessary for RNA binding. However, unlike IRP1, where reconstitution of the 4Fe-4S cluster resulted in a loss in RNA-binding activity, the RNA-binding activity of IRP2 was unaffected using the same iron treatment. These data suggested that IRP2 does not contain a 4Fe-4S cluster similar to the cluster in IRP1, indicating that they sense iron by different mechanisms. 相似文献
9.
Phosphatidylglycerophosphate (PG-P) synthase catalyzes the synthesis of PG-P from CDP-diacylglycerol and sn-glycerol 3-phosphate and functions as the committed and rate-limiting step in the biosynthesis of cardiolipin (CL). In eukaryotic cells, CL is found predominantly in the inner mitochondrial membrane and is generally thought to be an essential component of many mitochondrial functions. We have determined that the PEL1 gene (now renamed PGS1), previously proposed to encode a second phosphatidylserine synthase of yeast (Janitor, M., Jarosch, E., Schweyen, R. J., and Subik, J. (1995) Yeast 13, 1223-1231), in fact encodes a PG-P synthase of Saccharomyces cerevisiae. Overexpression of the PGS1 gene product under the inducible GAL1 promoter resulted in a 14-fold increase in in vitro PG-P synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast did not lead to a loss of viability but did result in a dependence on a fermentable carbon source for growth, a temperature sensitivity for growth, and a petite lethal phenotype. The pgs1 null mutant exhibited no detectable in vitro PG-P synthase activity and no detectable CL or phosphatidylglycerol (PG); significant CL synthase activity was still present. The growth arrest phenotype and lack of PG-P synthase activity of a pgsA null allele of Escherichia coli was corrected by an N-terminal truncated derivative of the yeast PG-P synthase. These results unequivocally demonstrate that the PGS1 gene encodes the major PG-P synthase of yeast and that neither PG nor CL are absolutely essential for cell viability but may be important for normal mitochondrial function. 相似文献
10.
K Maeda M Ono Y Kawaguchi M Niikura K Okazaki N Yokoyama Y Tokiyoshi Y Tohya T Mikami 《Canadian Metallurgical Quarterly》1996,46(1-2):75-80
We constructed a recombinant baculovirus expressing feline herpesvirus type I (FHV-1) gD in insect cells (Sf9 cells). The expressed product was identified as FHV-1 gD by a panel of monoclonal antibodies specific for the FHV-1 gD, and had an apparent molecular mass of approximately 49 kDa, which was less than that of the authentic FHV-1 gD. When the FHV-1 gD protein were expressed in Sf9 cells and CRFK cells in the presence of tunicamycin, the FHV-1 gD exhibited a molecular mass of 41 kDa. It was shown that the gD protein was transported to the surface of recombinant virus-infected Sf9 cells when examined by membrane-immunofluorescence analysis, and that the gD expressed on the surface of Sf9 cells adsorbed feline erythrocytes. Mice inoculated with a lysate of Sf9 cells expressing FHV-1 gD induced antibodies with virus-neutralizing and hemagglutination-inhibition activities. Therefore, the expressed gD appears to be biologically authentic. These data suggested that recombinant FHV-1 gD produced in Sf9 cells may be a useful immunogen as a feline vaccine. 相似文献
11.
A heparin cofactor II (HCII) mutant with an Arg substituted for Leu444 at the P1 position (L444R-rHCII) was previously found to have altered proteinase specificity (Derechin, V. M., Blinder, M. A., and Tollefsen, D. M. (1990) J. Biol. Chem. 265, 5623-5628). The present study characterizes the effect of glycosaminoglycans on the substrate versus inhibitor activity of L444R-rHCII. Heparin increased the stoichiometry of inhibition of L444R-rHCII with alpha-thrombin (compared with minus glycosaminoglycan) but decreased it with R93A,R97A,R101A-thrombin, a mutant thrombin that does not bind glycosaminoglycans. Dermatan sulfate decreased the stoichiometry of inhibition of L444R-rHCII with both proteinases. SDS-polyacrylamide gel electrophoresis showed no proteolysis of L444R-rHCII when incubated with R93A,R97A,R101A-thrombin in the absence or the presence of glycosaminoglycan or with alpha-thrombin and dermatan sulfate. In contrast, greater than 75% of the L444R-rHCII was converted to a lower molecular weight form when incubated with alpha-thrombin/heparin. A time course of alpha-thrombin inhibition by L444R-rHCII/heparin showed a rapid but transient inhibition with approximately 80% of the alpha-thrombin activity being regained after 6 h of incubation. In contrast, all other combinations of inhibitor, proteinase, and glycosaminoglycan resulted in complete and sustained inhibition of the proteinase. Heparin fragments of 8-20 polysaccharides in length rapidly accelerated L444R-rHCII inhibition of both alpha-thrombin and R93A,R97A,R101A-thrombin. After extended incubations, R93A,R97A,R101A-thrombin was completely inhibited by L444R-rHCII with all the heparin fragments, but approximately 30-50% of alpha-thrombin activity remained with fragments long enough to bridge HCII-thrombin. These results collectively indicate that ternary complex formation, mediated by heparin, increases L444R-rHCII inactivation by alpha-thrombin. 相似文献
12.
PURPOSE: To assess the local control and survival in patients who received pelvic irradiation for locally recurrent rectal carcinoma. METHODS AND MATERIALS: The records of 519 patients with locally recurrent rectal carcinoma treated principally with external-beam radiation therapy between 1975 to 1985 at a single institute were retrospectively reviewed. These included 326 patients who relapsed locally following previous abdominoperineal resection, 151 after previous low anterior resection, and 42 after previous local excision or electrocoagulation for the primary. No patients had received adjuvant radiation therapy or chemotherapy for the primary disease. Concurrent extrapelvic distant metastases were found in 164 (32%) patients at local recurrence and, in the remaining 355, the relapse was confined to the pelvis. There were 290 men and 229 women whose age ranged from 23 to 91 years (median = 65). Median time from initial surgery to radiation therapy for local recurrence was 18 months (3-138 months). Radiation therapy was given with varying dose-fractionation schedules, total doses ranging from 4.4 to 65.0 Gy (median = 30 Gy) over 1 to 92 days (median = 22 days). For 214 patients who received a total dose > or = 35 Gy, radiation therapy was given in 1.8 to 2.5 Gy daily fractions. RESULTS: The median survival was 14 months and the median time to local disease progression was 5 months from date of pelvic irradiation. The 5-year survival was 5%, and the pelvic disease progression-free rate was 7%. Twelve patients remained alive and free of disease at 5 years after pelvic irradiation. Upon multivariate analysis, overall survival was positively correlated with ECOG performance status (p = 0.0001), absence of extrapelvic metastases (p = 0.0001), long intervals from initial surgery to radiation therapy for local recurrence (p = 0.0001), total radiation dose (p = 0.0001), and absence of obstructive uropathy (p = 0.0013). Pelvic disease progression-free rates were positively correlated with ECOG performance status (p = 0.0001), total radiation dose (p = 0.0001), and previous conservative surgery for the primary (p = 0.02). CONCLUSIONS: Survival is poor for patients who develop local recurrence following previous surgery for rectal carcinoma. Pelvic radiation therapy provides only short-term palliation, and future efforts should be directed to the use of effective adjuvant therapy for patients with rectal carcinoma who are at high risk of local recurrence. 相似文献
13.
The Saccharomyces cerevisiae strand exchange protein 1 (Sep1; also referred to as Xrn1, Kem1, Rar5, or Stp beta) catalyzes the formation of hybrid DNA from model substrates in vitro. The protein is also a 5'-to-3' exonuclease active on DNA and RNA. Multiple roles for the in vivo function of Sep1, ranging from DNA recombination and cytoskeleton to RNA turnover, have been proposed. We show that Sep1 is an abundant protein in vegetative S. cerevisiae cells, present at about 80,000 molecules per diploid cell. Protein levels were not changed during the cell cycle or in response to DNA-damaging agents but increased twofold during meiosis. Cell fractionation and indirect immunofluorescence studies indicated that > 90% of Sep1 was cytoplasmic in vegetative cells, and indirect immunofluorescence indicated a cytoplasmic localization in meiotic cells as well. The localization supports the proposal that Sep1 has a role in cytoplasmic RNA metabolism. Anti-Sep1 monoclonal antibodies detected cross-reacting antigens in the fission yeast Schizosccharomyces pombe, in Drosophila melanogaster embryos, in Xenopus laevis, and in a mouse pre-B-cell line. 相似文献
14.
N Sakai S Yamazaki K Onodera K Yanai K Maeyama T Watanabe 《Canadian Metallurgical Quarterly》1993,46(1):95-99
We studied the effects of inactivators of the central histaminergic neuron system, (R)-alpha-methylhistamine, a histamine H3 receptor agonist, and (S)-alpha-fluoromethylhistidine, a histamine synthesis inhibitor, on locomotor activity and brain histamine content of mast cell-deficient W/Wv mice using a recently developed high-performance liquid chromatography system coupled with a fluorometric detector. IP injection of (R)-alpha-methylhistamine (6-50 mg/kg) increased brain histamine content after 1 h but caused no significant change in locomotor activity. IP injection of (S)-alpha-fluoromethylhistidine decreased brain histamine content at doses of 6-50 mg/kg and locomotor activity at doses of 12.5-50 mg/kg. However, locomotor activity was decreased significantly (in Student's t-test) by sequential administrations of (S)-alpha-fluoromethylhistidine (6 mg/kg) and (R)-alpha-methylhistamine (12.5 or 25 mg/kg), but not by (S)-alpha-fluoromethylhistidine (6 mg/kg) and other doses of (R)-alpha-methylhistamine (6 or 50 mg/kg). These results support the hypothesis that the central histaminergic neuron system is involved in the control of spontaneous locomotion or alertness. 相似文献
15.
CL Borders MJ Bjerrum MA Schirmer SG Oliver 《Canadian Metallurgical Quarterly》1998,37(32):11323-11331
All known Mn-containing superoxide dismutases (MnSODs) have a highly conserved histidine (His-30 in Escherichia coli FeSOD) in the active-site channel, and nearly all have an active-site arginine (Arg-170) that has been proposed to play a combined structural and functional role [Chan et al., Arch. Biochem. Biophys. 279, 195-201 (1990)]. In Saccharomyces cerevisiae MnSOD, the active-site arginine is replaced by a lysine. The S. cerevisiae MnSOD gene has been cloned and expressed in E. coli, and H30A and K170R site-specific mutants have been prepared. The purified recombinant native (RN) and mutant enzymes were compared to one another and to the native enzyme purified from S. cerevisiae (SC) in terms of activity, temperature stability, and sensitivity to 2,4,6-trinitrobenzenesulfonate (TNBS) and phenylglyoxal (PG). All enzymes had high specific activities (SC = 5000, RN = 5600, H30A = 4500, K170R = 4600) (U/mg, using the pyrogallol assay). SC, RN, and H30A were very stable at 75 degreesC (pH 8.0), with half-lives of 4.7, 2.8, and 2.7 h, respectively, while K170R had a much greater temperature lability, with a half-life of 0.36 h under these conditions. TNBS (0.5 mM, pH 9.0, 25 degreesC) rapidly inactivated SC, RN, and H30A, with half-lives of 3. 5, 5.1, and 5.5 min, respectively, but only slowly inactivated K170R, with a half-life of 101 min. PG (20 mM, pH 9.0, 25 degreesC) caused very slow inactivation of SC, RN, and H30A by biphasic kinetics, and each enzyme retained >/=25% activity after 3 h of modification. K170R, on the other hand, was completely inactivated by PG under these conditions by first-order kinetics, with a half-life of 7.0 min. The data suggest that His-30, a residue highly conserved in the active-site channel of MnSODs and FeSODs, does not play a crucial role in catalysis or stability. In addition, Lys-170, a residue that is almost always arginine in the numerous other MnSODs and FeSODs sequenced to date, can be replaced by arginine with no loss of catalytic activity, but K170R is less stable and Arg-170 in this mutant is more exposed than the corresponding arginine in other SODs. RN and SC showed some surprising differences. Thus, while the specific activities of RN and SC are very similar, SC is more stable to inactivation at 75 degreesC, and less susceptible to inactivation by phenylglyoxal, than RN. These data suggest that there may be slight differences in the tertiary structures of SC, the native enzyme expressed in S. cerevisiae, and RN, the recombinant native enzyme expressed in E. coli. 相似文献
16.
The genetic depletion of yeast Rrp5p results in a synthesis defect of both 18S and 5.8S ribosomal RNAs (Venema J, Tollervey D. 1996. EMBO J 15:5701-5714). We have isolated the RRP5gene in a genetic approach aimed to select for yeast factors interfering with protein import into mitochondria. We describe here a striking feature of Rrp5p amino acid sequence, namely the presence of twelve putative S1 RNA-binding motifs and seven tetratricopeptide repeats (TPR) motifs. We have constructed two conditional temperature-sensitive alleles of RRP5 gene and analyzed them for associated rRNA-processing defects. First, a functional "bipartite gene" was generated revealing that the S1 and TPR parts of the protein can act independently of each other. We also generated a two amino acid deletion in TPR unit 1 (rrp5delta6 allele). The two mutant forms of Rrp5p were shown to cause a defect in 18S rRNA synthesis with no detectable effects on 5.8S rRNA production. However, the rRNA processing pathway was differently affected in each case. Interestingly, the ROK1 gene which, like RRP5, was previously isolated in a screen for synthetic lethal mutations with snR10 deletion, was here identified as a high copy suppressor of the rrp5delta6 temperature-sensitive allele. ROK1 also acts as a low copy suppressor but cannot bypass the cellular requirement for RRP5. Furthermore, we show that suppression by the Rok1p putative RNA helicase rescues the 18S rRNA synthesis defect caused by the rrp5delta6 mutation. 相似文献
17.
18.
19.
SS Dignam JS Koushik J Wang RJ Trumbly KK Schlender EY Lee EM Reimann 《Canadian Metallurgical Quarterly》1998,357(1):58-66
Malignant hyperthermia (MH) is an uncommon cause of anesthetic-induced death; it is an inherited disorder that is triggered by the administration of anesthetic drugs. MH is triggered by the administration of volatile anesthetic agents and succinylcholine, a depolarizing muscle relaxant. It is imperative that the perianesthesia staff be familiar with the pharmacokinetics and pharmacodynamic properties of dantrolene, which is the only known agent effective in the treatment and prophylaxis of MH. 相似文献