首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 780 毫秒
1.
V.R. Choudhary  K.C. Mondal  T.V. Choudhary 《Fuel》2006,85(17-18):2484-2488
The oxy-CO2 methane reforming reaction (OCRM) has been investigated over CoOx supported on a MgO precoated highly macroporous silica–alumina catalyst carrier (SA-5205) at different reaction temperatures (700–900 °C), O2/CH4 ratios (0.3–0.45) and space velocites (20,000–100,000 cc/g/h). The reaction temperature had a profound influence on the OCRM performance over the CoO/MgO/SA-5205 catalyst; the methane conversion, CO2 conversion and H2 selectivity increased while the H2/CO ratio decreased markedly with increasing reaction temperature. While the O2/CH4 ratio did not strongly affect the CH4 and CO2 conversion and H2 selectivity, it had an intense influence on the H2/CO ratio. The CH4 and CO2 conversion and the H2 selectivity decreased while the H2/CO increased with increasing space velocity. The O2/CH4 ratio and the reaction temperature could be used to manipulate the heat of the reaction for the OCRM process. Depending on the O2/CH4 ratio and temperature the OCRM process could be operated in a mildly exothermic, thermal neutral or mildly endothermic mode. The OCRM reaction became almost thermoneutral at an OCRM reaction temperature of 850 °C, O2/CH4 ratio of 0.45 and space velocity of 46,000 cc/g/h. The CH4 conversion and H2 selectivity over the CoO/MgO/SA-5205 catalyst corresponding to thermoneutral conditions were excellent: 95% and 97%, respectively with a H2/CO ratio of 1.8.  相似文献   

2.
The optimization of process parameters and catalyst compositions for the CO2 oxidative coupling of methane (CO2-OCM) reaction over CaO–MnO/CeO2 catalyst was developed using Response Surface Methodology (RSM). The relationship between the responses, i.e. CH4 conversion, C2 hydrocarbons selectivity or yield, with four independent variables, i.e. CO2/CH4 ratio, reactor temperature, wt.% CaO and wt.% MnO in the catalyst, were presented as empirical mathematical models. The maximum C2 hydrocarbons selectivity and yields of 82.62% and 3.93%, respectively, were achieved by the individual-response optimization at the corresponding optimal process parameters and catalyst compositions. However, the CH4 conversion was a saddle function and did not show a unique optimum as revealed by the canonical analysis. Moreover pertaining to simultaneous multi-responses optimization, the maximum C2 selectivity and yield of 76.56% and 3.74%, respectively, were obtained at a unique optimal process parameters and catalyst compositions. It may be deduced that both individual- and multi-responses optimizations are useful for the recommendation of optimal process parameters and catalyst compositions for the CO2-OCM process.  相似文献   

3.
Minglin Xiang  Debao Li  Huijie Qi  Bing Zhong 《Fuel》2007,86(9):1298-1303
Potassium-promoted β-Mo2C catalysts were prepared and their performances in CO hydrogenation were investigated. The main products over β-Mo2C catalyst were C1-C4 hydrocarbons, only ∼4 C-atom% alcohols were obtained. The products of hydrocarbons and alcohols obeyed traditional linear Anderson-Schultz-Flory (A-S-F) distribution. However, modification with K2CO3 resulted in a remarkable selectivity shift from hydrocarbons to alcohols. Moreover, it was found that potassium promoter enhanced the ability of chain propagation of β-Mo2C catalysts and resulted in a higher selectivity to C2+OH. For K/β-Mo2C catalysts, the hydrocarbon products also obeyed traditional linear A-S-F plots, whereas alcohols gave a unique linear A-S-F distribution with remarkable deviation of methanol compared with that on β-Mo2C catalyst. It could be concluded that potassium promoter might exert a prominent function on the whole chain propagation to produce alcohols. A surface phase on the K/β-Mo2C catalysts such as the “K-Mo-C” explained the higher value for C2+OH, especially could promote the step of C1OH to C2OH, or could have a role in producing directly C2OH, but again this would be speculative. At the same time, the influence of the loadings of K2CO3 on the performances of β-Mo2C catalyst was investigated and the results revealed that the maximum yield of alcohol was obtained at K/Mo molar ratio of 0.2.  相似文献   

4.
In the hydrogenation of CO at atmospheric pressure, unsupported molybdenum carbide catalyst produced mostly C1-C5 paraffins. Promotion of the catalyst with K2CO3 yielded C2-C5 hydrocarbons consisting of 80–100% olefins and reduced the methane selectivity. The selectivity of C2-C5 olefins among all hydrocarbon products was 50–70 wt% at CO conversions up to 70%.This work has been supported by Korean Science and Engineering Foundation through a contract 88-03-1302.  相似文献   

5.
CO hydrogenation using cobalt/ manganese oxide catalysts is described and discussed. These catalysts are known to give low methane selectivity with high selectivity to C3 hydrocarbons at moderate reaction conditions (GHSV < 500 h–1, < 600 kPa). In this study the effect of reaction conditions more appropriate to industrial operation are investigated. CO hydrogenation at 1–2 MPa using catalyst formulations with Co/Mn = 0.5 and 1.0 gives selectivities to methane that are comparable to those observed at lower pressures. At the higher pressure the catalyst rapidly deactivates, a feature that is not observed at lower pressures. However, prior to deactivation rates of CO + CO2 conversion > 8 mol/1-catalyst h can be observed. Co-feeding ethene during CO hydrogenation is investigated by the reaction of13C0-12C2H4-H2 mixtures and a significant decrease in methane selectivity is observed but the hydrogenation of ethene is also a dominant reaction. The results show that the co-fed ethene can be molecularly incorporated but in addition it can generate a C, species that can react further to form methane and higher hydrocarbons.  相似文献   

6.
《Catalysis communications》2007,8(11):1711-1714
The reaction path of isoalkanes formation via CO2 hydrogenation was studied over the Fe–Zn–Zr/HY composite catalyst, which gives high selectivity to isoalkanes. The results indicate that the reverse water–gas shift reaction is not the indispensable step for the synthesis of hydrocarbons. And i-C4 (iso-butane) is formed from propylene and methanol through MTG (methanol to gasoline) reaction and i-C5 (iso-pentane) obtained from the reaction of C2 and C3 through the additive dimerization. A part of C1, C4 is formed on the sole Fe–Zn–Zr catalyst from methanol for the CO2 hydrogenation over Fe–Zn–Zr/HY composite catalyst.  相似文献   

7.
The effects of CO2, CO and H2 co-reactants on CH4 pyrolysis reactions catalyzed by Mo/H-ZSM-5 were investigated as a function of reaction temperatures and co-reactant and CH4 concentrations. Total CH4 conversion rates were not affected by CO2 co-reactants, except at high CO2 pressures, which led to the oxidation of the active MoC x species, but CH x intermediates formed in rate-determining C–H bond activation steps increasingly formed CO instead of hydrocarbons as CO2 concentrations increased. CO formation rates increased with increasing CO2 partial pressure; all entering CO2 molecules reacted with CH4 within the catalyst bed to form two CO molecules at 950-1033 K. In contrast, hydrocarbon formation rates decreased linearly with increasing CO2 partial pressure and reached undetectable levels at CO2/CH4 ratios above 0.075 at 950 K. CO formation continued for a short period of time at these CO2/CH4 molar ratios, but then all catalytic activity ceased, apparently as a result of the conversion of active carbide structures to MoO x . The removal of CO2 from the CH4 stream led to gradual catalyst reactivation via reduction-carburization processes similar to those observed during the initial activation of MoO x /H-ZSM-5 precursors in CH4. The CO2/CH4 molar ratios required to inhibit hydrocarbon synthesis were independent of CH4 pressure because of the first-order kinetic dependencies of both CH4 and CO2 activation steps. These ratios increased from 0.075 to 0.143 as reaction temperatures increased from 950 to 1033 K. This temperature dependence reflects higher activation energies for reductant (CH4) than for oxidant (CO2) activation, leading to catalyst oxidation at higher relative oxidant concentrations as temperature increases. The scavenging of CH x intermediates by CO2-derived species leads also to lower chain growth probabilities and to a significant inhibition of catalyst deactivation via oligomerization pathways responsible for the formation of highly unsaturated unreactive deposits. CO co-reactants did not influence the rate or selectivity of CH4 pyrolysis reactions on Mo/H-ZSM-5; therefore, CO formed during reactions of CO2/CH4 mixtures are not responsible for the observed effects of CO2 on reaction rates and selectivities, or in catalyst deactivation rates during CH4 reactions. H2 addition studies showed that H2 formed during CH4/CO2 reactions near the bed inlet led to inhibited catalyst deactivation in downstream catalyst regions, even after CO2 co-reactants were depleted.  相似文献   

8.
This paper reports on notable promotion of C2 + hydrocarbons formation from CO2 hydrogenation induced by combining Fe and a small amount of selected transition metals. Al2O3-supported bimetallic Fe–M (M = Co, Ni, Cu, Pd) catalysts as well as the corresponding monometallic catalysts were prepared, and examined for CO2 hydrogenation at 573 K and 1.1 MPa. Among the monometallic catalysts, C2 + hydrocarbons were obtained only with Fe catalyst, while Co and Ni catalysts yielded higher CH4 selectively than other catalysts. The combination of Fe and Cu or Pd led to significant bimetallic promotion of C2 + hydrocarbons formation from CO2 hydrogenation, in addition to Fe–Co formulation discovered in our previous work. CO2 conversion on Ni catalyst nearly reached equilibrium for CO2 methanation which makes this catalyst suitable for making synthetic natural gas. Fe–Ni bimetallic catalyst was also capable of catalyzing CO2 hydrogenation to C2 + hydrocarbons, but with much lower Ni/(Ni+Fe) atomic ratio compared to other bimetallic catalysts. The addition of a small amount of K to these bimetallic catalysts further enhanced CO2 hydrogenation activity to C2 + hydrocarbons. K-promoted Fe–Co and Fe–Cu catalysts showed better performance for synthesizing C2 + hydrocarbons than Fe/K/Al2O3 catalyst which has been known as a promising catalyst so far.  相似文献   

9.
A monolithic electropromoted reactor (MEPR) with up to 22 thin Rh/YSZ/Pt or Cu/TiO2/YSZ/Au plate cells was used to investigate the hydrogenation of CO2 at atmospheric pressure and temperatures 220–380 °C. The Rh/YSZ/Pt cells lead to CO and CH4 formation and the open-circuit selectivity to CH4 is less than 5%. Both positive and negative applied potentials enhance significantly the total hydrogenation rate but the selectivity to CH4 remains below 12%. The Cu/TiO2/YSZ/Au cells produce CO, CH4 and C2H4 with selectivities to CH4 and C2H4 up to 80% and 2%. Both positive and negative applied potential significantly enhance the hydrogenation rate and the selectivity to C2H4. It was found that the addition of small (0.5 kPa) amounts of CH3OH in the feed has a pronounced promotional effect on the reaction rate and selectivity of the Cu/TiO2/YSZ/Au cells. The selective reduction of CO2 to CH4 starts at 220 °C (vs 320 °C in absence of CH3OH) with near 100% CH4 selectivity at open-circuit and under polarization conditions at temperatures 220–380 °C. The results show the possibility of direct CO2 conversion to useful products in a MEPR via electrochemical promotion at atmospheric pressure.  相似文献   

10.

The synthesis and characterization of an inexpensive porous MoxCy/SiO2 material is presented, which was obtained by mixing ammonium hexamolybdate, sucrose, and a mesoporous silica (SBA-15), with a subsequent heat treatment under inert atmosphere. This porous material presented a specific surface area of 170 m2/g. The catalytic behavior in CO2 hydrogenation was compared with that of Mo2C and α-MoC1?x obtained from ammonium hexamolybdate and sucrose, using different Mo/C ratios. CO2 hydrogenation tests were performed at moderate (100 kPa) and high pressures (2.0 MPa), and it was found that only CO, H2O and CH4 are formed at moderate pressures by the three materials, while at higher pressures, methanol and hydrocarbons (C2H6, C3H8) are also obtained. Differences in selectivity were observed at the high pressure tests. Mo2C presented higher selectivity to CO and methanol compared with MoC1?x, which showed preferential selectivity to hydrocarbons (CH4, C2H6). The porous MoxCy/SiO2 material showed the highest CO2 hydrogenation activity at high temperatures (270 and 300 °C), being a promising material for the conversion of CO2 to CO and CH4.

  相似文献   

11.
The hydrogenation of CO2 has been studied over Fe/alumina and Fe-K/alumina catalysts. The addition of potassium increases the chemisorption ability of CO2 but decreases that of H2. The catalytic activity test at high pressure (20 atm) reveals that remarkably high activity and selectivity toward light olefins and C2+ hydrocarbons can be achieved with Fe-K/alumina catalysts containing high concentration of K (K/Fe molar ratio = 0.5, 1.0). In the reaction at atmospheric pressure, the highly K-promoted catalysts give much higher CO formation rate than the unpromoted catalyst. It is deduced that the remarkable catalytic properties in the presence of K are attributable to the increase in the ability of CO2 chemisorption and the enhanced activity for CO formation, which is the preceding step of C2+ hydrocarbon formation.  相似文献   

12.
Biomass gasification and subsequent conversion of this syngas to liquid hydrocarbons using Fischer–Tropsch (F–T) synthesis is a promising source of hydrocarbon fuels. However, biomass-derived syngas is different from syngas obtained from other sources such as steam reforming of methane. Specifically the H2/CO ratio is less than 1/1 and the CO2 concentrations are somewhat higher. Here, we report the use of Fe-based F–T catalysts for the conversion of syngas produced by the air-blown, atmospheric pressure gasification of southern pine wood chips. The syngas from the gasification step is compressed and cleaned in a series of sorbents to produce the following feed to the F–T step: 2.78 % CH4, 11 % CO2, 15.4 % H2, 21.3 % CO, and balance N2. The relatively high level of CO2 suggests the need to use catalysts that are active for CO2 hydrogenation as well is resistant to oxidation in presence of high levels of CO2. The work reported here focuses on the effect of these different structural promoters on iron-based F–T catalysts with the general formulas 100Fe/5Cu/4K/15Si, 100Fe/5Cu/4K/15Al and 100Fe/5Cu/4K/15Zn. Although the effect of Si, Al or Zn on iron-based F–T catalysts has been examined previously for CO+CO2 hydrogenation, we have found no direct comparison of these three structural promoters, nor any studies of these promoters for a syngas produced from biomass. Results show that catalysts promoted with Zn and Al have a higher extent of reduction and carburization in CO and higher amount of carbides and CO adsorption as compared to Fe/Cu/K/Si. This resulted in higher activity and selectivity to C5+ hydrocarbons than the catalyst promoted with silica.  相似文献   

13.
A batch reactor directly combined with an ultrahigh vacuum apparatus, which is equipped with facilities for catalyst preparation and Auger electron spectroscopy, was used to answer some questions which had arisen in recent studies concerning carbon dioxide hydrogenation on pure metallic and supported Co catalysts. Both oxygen incorporated during oxidation/reduction cycles and carbon deposited when CO2 is hydrogenated penetrate deep into the bulk. This kind of carbon can easily be hydrogenated. CO strongly hinders the reduction of the oxidized Co surface in the H2/CO2 reaction mixture (4 : 1). CO hydrogenation is favoured over CO2 hydrogenation and leads to a higher percentage of C2 to C4 hydrocarbons as compared with CH4 formation.  相似文献   

14.
Hydroformylation of ethylene and CO hydrogenation were studied over cobalt-based catalysts derived from reaction of Co2(CO)8 with ZnO, MgO and La2O3 supports. At 433 K a similar activity sequence was reached for both reactions: Co/ ZnO > Co/La2O3 > Co/MgO. This confirms the deep analogy between hydroformylation and CO hydrogenation into alcohols. In the CO hydrogenation the selectivity towards alcohol mixture (C1-C3) was found to be near 100% at 433 K for a conversion of 6% over the Co/ZnO catalyst; this catalyst showed oxo selectivity higher than 98% in the hydroformylation of ethylene. Magnetic experiments showed that no metallic cobalt particles were formed at 433 K. It is suggested that the active site for the step that is common to both reactions is related to the surface homonuclear Co2+/[Co(CO)4] ion-pairing species.  相似文献   

15.
The hydrogenation of C, CO, and CO2 has been studied on polycrystalline cobalt foils using a combination of UHV studies and atmospheric pressure reactions in temperature range from 475 to 575 K at 101 kPa total pressure. The reactions produce mainly methane but with selectivities of 98, 80, and 99 wt% at 525 K for C, CO, and CO2, respectively. In the C and CO2 hydrogenation the rest is ethane, whereas in CO hydrogenation hydrocarbons up to C4 were detected. The activation energies of methane formation are 57, 86, and 158 kJ/mol from C, CO, and CO2, respectively. The partial pressure dependencies of the CO and CO2 hydrogenation indicate roughly first order dependence on hydrogen pressure (1.5 and 0.9), negative first order on CO (–0.75) and zero order on CO2 (–0.05). Post reaction spectroscopy revealed carbon deposition from CO and oxygen deposition from CO2 on the surface above 540 K. The reduction of cobalt oxide formed after dissociation of C-O bonds on the surface is proposed to be the rate limiting step in CO and CO2 hydrogenation.  相似文献   

16.
In the production of higher hydrocarbons, combining oxidative coupling of methane (OCM) with hydrogenation of the formed carbon oxides in a separate reactor provides an alternative to the currently applied methane conversion to syngas followed by Fischer‐Tropsch synthesis. The effects of CH4:O2 feed ratio in the OCM reactor and partial pressures of H2 or/and H2O in the hydrogenation reactor were analyzed to maximize production of C2+ hydrocarbons and reduce COx formation. The highest C2+ yield was achieved with low CH4:O2 feed ratio for OCM and removal of the formed water before entering the hydrogenation reactor.  相似文献   

17.
The hydrogenation of CO2 was investigated over a Rh catalyst prepared from an amorphous Rh20Zr80 alloy. After the reaction, the catalyst was regenerated by oxidation in air and reduction in H2. It was observed that the reaction activity increased with the repetition of regeneration. We also prepared the Rh/ZrO2 catalyst by the conventional impregnation method. The difference in the turnover frequency between the alloy-precursor catalyst and the conventionally prepared catalyst was small. For the alloy-precursor catalyst, however, the conversion and CH4 selectivity were stable at 723 K, whereas the conversion and CH4 selectivity decreased with time-on-stream even at 673 K for the catalyst prepared by the conventional impregnation method.  相似文献   

18.
Pulse studies of the interaction of CH4 and NiO/Al2O3 catalysts at 500°C indicate that CH4 adsorption on reduced nickel sites is a key step for CH4 oxidative conversion. On an oxygen-rich surface, CH4 conversion is low and the selectivity of CO2 is higher than that of CO. With the consumption of surface oxygen, CO selectivity increases while the CO2 selectivity falls. The conversion of CH4 is small at 500°C when a pulse of CH4/O2 (CH4O2=21) is introduced to the partially reduced catalyst, indicating that CH4 and O2 adsorption are competitive steps and the adsorption of O2 is more favorable than CH4 adsorption  相似文献   

19.
Almost 100% CO selectivity was achieved with small pulses of CH4/O2 (2/1), using very short residence times over a reduced NiO/La2O3 catalyst. One concludes that CH4 conversion depends on its dissociation, whereas CO selectivity is mainly dependent on the strength of oxygen binding to the catalyst. Over the reduced catalyst, the oxygen species oxidize with difficulty (because of their strong binding to metal Ni) CO to CO2, whereas over the unreduced catalyst (which contains Ni oxide), the oxygen species easily oxidize (because they are weakly adsorbed) CO to CO2.  相似文献   

20.
The influence of CO2 on the deactivation of Co/γ-Al2O3 Fischer–Tropsch (FT) catalyst in CO hydrogenation has been investigated. The presence of CO2 in the feed stream reveals a negative effect on catalyst stability and in the formation of heavy hydrocarbons. The CO2 acts as a mild oxidizing agent on cobalt metal during Fischer–Tropsch synthesis. During FT synthesis on Co/γ-Al2O3 of 70 h, the CO conversion and C5+ selectivity in the presence of CO2 decreased more significantly than in the absence of CO2. CO2 is found to be responsible for the partial oxidation of surface cobalt metal at FT synthesis environment with the co-existence of generated water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号