首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For a better understanding of the short and mid-term impacts of a combined sewer overflow (CSO) on the microbiological quality of the receiving river, we studied the composition of a CSO discharge and monitored during several hours the changes in the concentration of fecal indicator bacteria (FIB) in the impacted river water mass. The CSO occurred at the Clichy outfall (Paris agglomeration, France) in summer 2008 as a result of the most intense rainfall of the year. In 6h, 578, 705 m3 of sewage and 124 t of suspended matter (SM) were discharged into the Seine River. The CSO contained 1.5 × 106E. coli and 4.0 × 105 intestinal enterococci per 100 mL on average, and 77% of the E. coli were attached to SM. It was estimated that 89% of the CSO discharge was contributed by surface water runoff, and that resuspension of sewer sediment contributed to ∼75% of the SM, 10-70% of the E. coli and 40-80% of the intestinal enterococci. Directly downstream from the CSO outfall, FIB concentrations in the impacted water mass of the Seine River (2.9 × 105E. coli and 7.6 × 104 intestinal enterococci per 100 mL) exceeded by two orders of magnitude the usual dry weather concentrations. After 13-14 h of transit, these concentrations had decreased by 66% for E. coli and 79% for intestinal enterococci. This decline was well accounted for by our estimations of dilution, decay resulting from mortality or loss of culturability and sedimentation of the attached fraction of FIB.  相似文献   

2.
Escherichia coli bacteria are commonly used as indicator organisms to designate of impaired surface waters and to guide the design of management practices to prevent fecal contamination of water. Stream sediments are known to serve as a reservoir and potential source of fecal bacteria (E. coli) for stream water. In agricultural watersheds, substantial numbers of E. coli may reach surface waters, and subsequently be deposited into sediments, along with fecal material in runoff from land-applied manures, grazing lands, or wildlife excreta. The objectives of this work were (a) to test the hypothesis that E. coli survival in streambed sediment in the presence of manure material will be affected by sediment texture and organic carbon content and (b) to evaluate applicability of the exponential die-off equation to the E. coli survival data in the presence of manure material. Experiments were conducted at three temperatures (4 °C, 14 °C, and 24 °C) in flow-through chambers using sediment from three locations at the Beaverdam Creek Tributary in Beltsville, Maryland mixed with dairy manure slurry in the proportion of 1000:1. Indigenous E. coli populations in sediments ranged from ca. 101 to 103 MPN g−1 while approx 103 manure-borne E. coli MPN g−1 were added. E. coli survived in sediments much longer than in the overlaying water. The exponential inactivation model gave an excellent approximation of data after 6-16 days from the beginning of the experiment. Slower inactivation was observed with the increase in organic carbon content in sediments with identical granulometric composition. The increase in the content of fine particles and organic carbon in sediments led not only to the slower inactivation but also to lower sensitivity of the inactivation to temperature. Streambed sediment properties have to be documented to better evaluate the role of sediments as reservoirs of E. coli that can affect microbiological stream water quality during high flow events.  相似文献   

3.
Modeling surface water Escherichia coli fate and transport requires partitioning E. coli into particle-attached and unattached fractions. Attachment is often assumed to be a constant fraction or is estimated using simple linear models. The objectives of this study were to: (i) develop statistical models for predicting E. coli attachment and virulence marker presence in fluvial systems, and (ii) relate E. coli attachment to a variety of environmental parameters. Stream water samples (n = 60) were collected at four locations in a rural, mixed-use watershed between June and October 2012, with four storm events (>20 mm rainfall) being captured. The percentage of E. coli attached to particles (>5 μm) and the occurrences of virulence markers were modeled using water quality, particle concentration, particle size distribution, hydrology and land use factors as explanatory variables. Three types of statistical models appropriate for highly collinear, multidimensional data were compared: least angle shrinkage and selection operator (LASSO), classification and regression trees using the general, unbiased, interaction detection and estimation (GUIDE) algorithm, and multivariate adaptive regression splines (MARS). All models showed that E. coli particle attachment and the presence of E. coli virulence markers in the attached and unattached states were influenced by a combination of water quality, hydrology, land-use and particle properties. Model performance statistics indicate that MARS models outperform LASSO and GUIDE models for predicting E. coli particle attachment and virulence marker occurrence. Validating the MARS modeling approach in multiple watersheds may allow for the development of a parameterizing model to be included in watershed simulation models.  相似文献   

4.
Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent.Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day−1 (d−1) at 7.6 °C to 0.18 d−1 at 22.8 °C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d−1 to 0.03 d−1 at an average water temperature of 17 °C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d−1 at 7.7 °C to 0.04 d−1 at 24.6 °C. Calculated distribution coefficients (Kd) were 19,000 mL g−1, 324,000 mL g−1, and 293 mL g−1 for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were “free floating” or associated with particles <5 μm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 μm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the particles the bacteria were associated with had very small settling velocities.The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.  相似文献   

5.
High concentrations of Escherichia coli in mats of Cladophora in the Great Lakes have raised concern over the continued use of this bacterium as an indicator of microbial water quality. Determining the impacts of these environmentally abundant E. coli, however, necessitates a better understanding of their ecology. In this study, the population structure of 4285 Cladophora-borne E. coli isolates, obtained over multiple three day periods from Lake Michigan Cladophora mats in 2007-2009, was examined by using DNA fingerprint analyses. In contrast to previous studies that have been done using isolates from attached Cladophora obtained over large time scales and distances, the extensive sampling done here on free-floating mats over successive days at multiple sites provided a large dataset that allowed for a detailed examination of changes in population structure over a wide range of spatial and temporal scales. While Cladophora-borne E. coli populations were highly diverse and consisted of many unique isolates, multiple clonal groups were also present and accounted for approximately 33% of all isolates examined. Patterns in population structure were also evident. At the broadest scales, E. coli populations showed some temporal clustering when examined by year, but did not show good spatial distinction among sites. E. coli population structure also showed significant patterns at much finer temporal scales. Populations were distinct on an individual mat basis at a given site, and on individual days within a single mat. Results of these studies indicate that Cladophora-borne E. coli populations consist of a mixture of stable, and possibly naturalized, strains that persist during the life of the mat, and more unique, transient strains that can change over rapid time scales. It is clear that further study of microbial processes at fine spatial and temporal scales is needed, and that caution must be taken when interpolating short term microbial dynamics from results obtained from weekly or monthly samples.  相似文献   

6.
Throughout the thermal cycle of Lake Vechten (The Netherlands) the concentrations and chemical composition of particulate matter suspended in the water, deposited on the bottom near the shore and collected in sediment traps was measured. With regard to the distribution of particulate matter two significant periods during the thermal cycle could be distinguished. From May till mid-August a temperature gradient was present in the water column. During that period the average rate of increase in dry weight of bottom deposits and the sedimentation rate on that location were similar, i.e. lake wide 1.5 and 1.7 gm 2d−1 respectively. This indicates a dominating role of settling particles in the building-up of the temporary shallow sediment, which resulted in the typical summer maximum of nearly 145 g m−2. From mid-August onwards the concentration of this sediment zone decreased sharply coinciding with the disappearance of the temperature gradient. This removal was explained by the mechanism of enhanced turbulence, occurring when thermal homogeneity was reached, which initiated resuspension and subsequent transportation of the particles to greater depths. From light profiles it was inferred that the flux of particles was confined largely to the water layer of 1 m near the bottom. From comparison of the sedimentation rate in the central part of the lake with that in the shallow zone it could be estimated that compared to the particle flux in the open water towards profundal sediments, the flux along the bottom amounted during the thermal stratification period to an average of at least 42%.  相似文献   

7.
Numerical calculation is an effective method to predict the scouring depth of fine-grained sediments. However, as many soil properties affect sediment erodibility, numerically simulated parameters, such as critical erosion stress τ c , may result in wrong prediction. To understand the erosion resistance and scouring depth of fine-grained seabed in the Huanghe (Yellow) River estuary, China, the authors calculated the critical erosion stress τ c of the bottom sediments using regression equations that correlated physical properties to critical shear stress of silty fine-grained sediment of the research area and predicted the scouring depth of the study area using different available formulae. The results indicate that τ c ranges from 0.48 to 1.74 Pa. Comparisons show that the results calculated from the empirical formula proposed by Kandiah are close to the measured data, and choosing the right parameters of sediment in the formula decides the accuracy of the scouring depth calculation. With the Kandiah τ c value, the seabed scouring amplitudes in wave action periods of 5, 10, 25 and 50 years were simulated. The calculated results of scouring depth are between 0 and 0.23 m and the corresponding scouring center was predicted to be in the region of depths between 5 and 9 m. Meanwhile, the scouring center was found to be highly correlated with wave breaking and sediment properties.  相似文献   

8.
Walters SP  Thebo AL  Boehm AB 《Water research》2011,45(4):1752-1762
Fecal pollution enters coastal waters through multiple routes, many of which originate from land-based activities. Runoff from pervious and impervious land surfaces transports pollutants from land to sea and can cause impairment of coastal ocean waters. To understand how land use practices and water characteristics influence concentrations of fecal indicator bacteria (FIB) and pathogens in natural waters, fourteen coastal streams, rivers, and tidal lagoons, surrounded by variable land use and animal densities, were sampled every six weeks over two years (2008 & 2009). Fecal indicator bacteria (FIB; Escherichia coli and Enterococci) and Salmonella concentrations, the occurrence of Bacteroidales human, ruminant, and pig-specific fecal markers, E. coli O157:H7, and Shiga toxin (stx) genes present in E. coli, were measured. In addition, environmental and climatic variables (e.g., temperature, salinity, rainfall), as well as human and livestock population densities and land cover were quantified. Concentrations of FIB and Salmonella were correlated with each other, but the occurrence of host-specific Bacteroidales markers did not correlate with FIB or pathogens. FIB and Salmonella concentrations, as well as the occurrence of E. coli harboring stx genes, were positively associated with the fraction of the surrounding subwatershed that was urban, while the occurrence of E. coli O157:H7 was positively associated with the agricultural fraction. FIB and Salmonella concentrations were negatively correlated to salinity and temperature, and positively correlated to rainfall. Areal loading rates of FIB, Salmonella and E. coli O157:H7 to the coastal ocean were calculated for stream and river sites and varied with land cover, salinity, temperature, and rainfall. Results suggest that FIB and pathogen concentrations are influenced, in part, by their flux from the land, which is exacerbated during rainfall; once waterborne, bacterial persistence is affected by water temperature and salinity.  相似文献   

9.
A monitoring program was initiated for two sewage outfalls (OA and OB) with different land uses (mainly residential versus institutional) over the course of a year. Eleven CSO events resulting from fall and summer precipitations and a mixture of snowmelt and precipitation in late winter and early spring were monitored. Median concentrations measured in CSOs were 1.5 × 106 Escherichia coli/100 mL, 136.0 mg/L of Total Suspended Solids (TSS), 4599.0 ng/L of caffeine (CAF), 158.9 ng/L of carbamazepine (CBZ), in outfall OA and 5.1 × 104 E. coli/100 mL, 167.0 mg TSS/L, 300.8 ng CAF/L, 4.1 ng CBZ/L, in outfall OB. Concentration dynamics in CSOs were mostly related to the dilution by stormwater and the time of day of the onset of overflows. Snowmelt was identified as a critical period with regards to the protection of drinking water sources given the high contaminant concentrations and long duration of events in addition to a lack of restrictions on overflows during this period. Correlations among measured parameters reflected the origins and transport pathways of the contaminants, with E. coli being correlated with CBZ. TSS were not correlated with E. coli because E. coli was found to be mostly associated with raw sewage whereas TSS were additionally from the resuspension of in-sewer deposits and surface runoff. In receiving waters, E. coli remained the best indicator of fecal contamination in strongly diluted water samples as compared to WWMPs because WWMPs can be diluted to below their detection limits.  相似文献   

10.
Cui X  Talley JW  Liu G  Larson SL 《Water research》2011,45(11):3300-3308
The role of primary sludge particulates (PSPs) in ultrasonic disinfection of Escherichia coli (E. coli) was investigated. Entrapment of E. coli by PSP was directly observed through scanning electron microscope (SEM) after E. coli and PSP were incubated together in water for 24 h at 35 °C. Entrapment coefficient was proposed for the first time to reflect the ability of PSP to entrap E. coli and was estimated as 1.4 × 103 CFU/mg PSP under our experimental conditions. Ultrasonication (20 kHz) of different E. coli-PSPs solutions showed that the entrapped E. coli cells were protected by PSP from ultrasonication and the unentrapped cells were not. However, the protection of entrapped E. coli cells gradually decreased as ultrasonication proceeded, suggesting the ability of power ultrasonication to deprotect the entrapped E. coli cells. SEM studies suggested a two-step mechanism for ultrasonic (20 kHz) disinfection of entrapped E. coli: breakdown of the protective PSP refugia and disinfection of the exposed E. coli cells. This research will enable more informed decisions about disinfection of aqueous samples where porous PSP are present.  相似文献   

11.
Fecal indicators such as Escherichia coli and enterococci are used as regulatory tools to monitor water with 24 h cultivation techniques for possible input of sewage or feces and presence of potential enteric pathogens yet their source (human or animal) cannot be determined with routine methods. This critical uncertainty has furthered water pollution science toward new molecular approaches. Members of Bacteroides genus, such as Bacteroides thetaiotaomicron are found to have features that allow their use as alternative fecal indicators and for Microbial Source Tracking (MST). The overall aim of this study was to evaluate the concentration and fate of B. thetaiotaomicron, throughout a wastewater treatment facility and septage treatment facility. A large number of samples were collected and tested for E. coli and enterococci by both cultivation and qPCR assays. B. thetaiotaomicron qPCR equivalent cells (mean: 1.8 × 107/100 mL) were present in significantly higher concentrations than E. coli or enterococci in raw sewage and at the same levels in raw septage. The removal of B. thetaiotaomicron target qPCR signals was similar to E. coli and enterococci DNA during the treatment of these wastes and ranged from 3 to 5 log10 for wastewater and was 7 log10 for the septage. A significant correlation was found between B. thetaiotaomicron marker and each of the conventional indicators throughout the waste treatment process for both raw sewage and septage. A greater variability was found with enterococci when compared to E. coli, and CFU and equivalent cells could be contrasted by various treatment processes to examine removal and inactivation via septage and wastewater treatment. These results are compared and contrasted with other qPCR studies and other targets in wastewater samples providing a view of DNA targets in such environments.  相似文献   

12.
This research work deals with an experimental study on the erosion phenomenon of a mud under the action of a water current. It is observed from research works carried out by Partheniades (J Hydraul Div ASCE 91(HY1):105–139, 1965), Migniot (La Houille Blanche 1&2:11–29, 95–111, 1989), Ockenden and Delo (GeoMar Lett 11:138–142, 1991), Aberle et al. (Mar Geol 207:83–93, 2004), among others, that mud erosion process by an hydrodynamic action depends mainly on sediment properties. Based on a literature study, this critical stress is assumed to be proportional either to the effective cohesion (Eq. 2) or to the yield stress (Eq. 4) of the sediment bed. Six erosion test series have been performed at six different concentrations of a mud from the Loire estuary. Some properties of the tested sediments are: a solid particles density ρ s = 2,550 kg m?3, a liquidity and plasticity limit at 140 and 70% of the water content, respectively, a mean size of the dispersed mineral fraction determined by laser techniques of 10 μm, and a volatile matters content of 11.86% by total dry weight burned at 550°C. As the rheological behaviour is difficult to describe, the sediment strength is characterized by only a parameter, namely, the yield stress τ y . It is measured with a coaxial cylinder Brookfield LVT viscosimeter following a defined procedure (Hosseini in Liaison entre la rigidité initiale et la cohésion non drainée dans les vases molles—Relation avec la dynamique sédimentaire. Thèse, Université de Nantes, 167 p, 1999). For each studied concentration, three successive erosion tests are carried out, and for every erosion test, 15 successive measurements of τ y are made. The mean values and the standard deviations of τ y are shown in Table 1 as a function of the bed sediment concentration C. A confined flume has been conceived and built to characterize the erosion rates. With this device, a current-induced shear stress is generated above an homogeneous deposited sediment (Fig. 1). The bed shear stress τ o is calculated from the measured mean velocity V by Eq. 5. The friction coefficient c f involved in Eq. 5 has been evaluated from measurements of the hydraulic pressure loss. Finally, the validity of Eq. 5 has been confirmed by five calibration tests on the incipient of the movement of sands for which results are compared with Shields diagram in Fig. 2. The observed erosion mechanisms affecting cohesive sediments depend mainly on the value of the yield stress. For a fluid mud (τ y less than 3 N m?2), the bed shear stress produces at first a wavy motion on the bed surface with a progressive undulation. When the shear stress increases, resuspension produces a diluted sediment cloud which is entrained and dispersed by the flow. For a plastic mud (τ y greater than 3 N m?2), erosion occurs by a wrenching of aggregates which are transported near the bottom. Initially, the eroded aggregates measure several millimetres in size; but, once transported, aggregates break into very rigid and compact aggregates of maximum size close to 1 mm in all the cases. During erosion tests, erosion volumetric rates E v have been evaluated under steady-state bed shear stress τ o from the observed variation in time of suspended sediment concentration. A generalized erosion is assumed for E v ≥ E vo = 3 × 10?7 m s?1 (that is the equivalent of 1 mm sediment layer eroded per hour). The generalized erosion occurs above a critical bed shear stress τ oe which is linked to τ y and mud density through Eq. 7. A phenomenological law defined by Eq. 8 is proposed to calculate the erosion rate as a function of yield stress and hydrodynamic shear stress at the bottom. For τ o τ oe , a small erosion is observed, which is described by a formulation given by Cerco et al. (Water quality model of Florida Bay. U.S. Army Engineer Research and Development Center, ERDC/EL TR?00-10, Vicksburg, USA, 260 p, 2000). Above τ oe , a small increase in τ o produces an important erosion rate rise which is described by a formulation suggested by Mehta and Partheniades (Resuspension of deposited cohesive sediment beds. In: Proceedings of the 18th coastal engineering conference, Cape Town, South Africa, 2:1569–1588, 1982). Figure 3 shows as a function of τ o the observed values of E v (discrete symbols) as well as the proposed model (in solid lines) for the six concentrations. For the theoretically maximum value of E v , the hydrodynamic shear stress is very high with regard to the sediment cohesion; and then, the water flux produces an entrainment of underlying fluid mud layers. The asymptotic law obtained from the model of Kranenburg and Winterwerp (1997) plotted in dashed lines in Fig. 3, is expressed by E v = 0.3 u * . A sediment trap inserted in the experimental system allows a sample of eroded mud aggregates to be obtained. It is observed that the maximum value of the diameter D M of the eroded aggregates depends on the density and yield stress of the initially deposited mud according to Eq. 10. In the same way, the density of the aggregates issued from plastic mud erosion is measured following an original experimental method and procedure (Table 3). The erosion of plastic muds with a concentration from 310 to 420 kg m?3 produces aggregates with a concentration close to 400 kg m?3 and yield stress a little greater than 100 N m?2.  相似文献   

13.
Kollu K  Ormeci B 《Water research》2012,46(3):750-760
Presence of particles is known to decrease the effectiveness of ultraviolet (UV) disinfection by shielding the targeted microorganisms from UV light. This study aims to provide an in-depth understanding on the effect of particles and flocs on UV disinfection by using a stable, well-defined and well-controlled synthetic system that can simulate the bioflocculation of particles and microorganisms in water and wastewater samples. The synthetic system was created by using Escherichia coli, latex particles (1, 3.2, 11, 25, and 45 μm), alginate, and divalent cations; and the bioflocculation of particles was achieved naturally, as it would occur in the environment, without using chemical coagulants. E. coli was quantified before and after UV disinfection using membrane filtration. Even in the absence of particles, some of the self-aggregated E. coli could survive a UV dose of 90 mJ/cm2. E. coli inactivation levels measured in the presence of particles were lower than the inactivation levels measured in the absence of particles. At low UV doses (<9 mJ/cm2), neither particle size nor degree of flocculation had a significant effect on the inactivation of E. coli. Particle size had a significant effect on the inactivation of E. coli only at high UV doses (80 mJ/cm2), and larger particles (e.g., 25 μm) protected bacteria more compared to smaller particles (e.g., 3.2 and 11 μm). What size of particles flocs were made of (3.2, 11, and 25 μm) did not make a significant difference on the inactivation levels of E. coli. For 3.2 μm particles, there was no significant difference in E. coli inactivation between non-flocculated and flocculated samples at any UV dose. For 11 and 25 μm particles, there was a significant difference in E. coli inactivation between non-flocculated and flocculated samples at 80 mJ/cm2. Degree of flocculation became a significant factor in determining the number of surviving bacteria only at high UV doses and only for larger particles.  相似文献   

14.
Esseili MA  Kassem II  Sigler V 《Water research》2008,42(17):4467-4476
We evaluated the use of DGGE fingerprinting to differentiate communities of Escherichia coli from animal and geographic sources. An initial screening of 15 gene candidates revealed the ability of three target genes (mdh, phoE and uidA-4) to effectively differentiate E. coli communities originating in horses, pigs, geese and goats. Cluster and jackknife analyses performed on the communities from a more extensive number of hosts (n = 150) including humans (via raw sewage), horses, pigs, geese and cows revealed that the internal accuracy of classification of E. coli community fingerprints to their origin was similar for each of the three genes (85-86%). Each of the three genes were tested for their ability to associate E. coli source- and sink communities in two settings featuring contaminated water; (i) a stream receiving municipal wastewater effluent and (ii) a pond inhabited by geese. For each gene, DGGE fingerprints effectively matched effluent- and downstream E. coli communities (98-100% similarity) and excluded upstream communities, while communities from goose fecal material were 77-79% similar to communities in pond water, indicating fecal inputs from geese. Furthermore, each gene discriminated against E. coli communities from hosts non-indigenous to either setting. DGGE analysis of E. coli communities appears to be a promising tool to augment existing efforts aiming to address the dynamics of bacteria pollution in complex, natural environments.  相似文献   

15.
The spread of antibiotics resistance among bacteria is a threat to human health. Since South Korea uses approximately 1.5 times more antibiotics than do other OECD countries, this is likely to impact the numbers and types of antibiotic-resistant bacteria found in the environment. In this study we examined feces from domesticated animals and humans for the diversity and abundance of antibiotic-resistant Escherichia coli. Abundant antibiotic-resistant E. coli were isolated from all the tested animals and humans and were examined by horizontal, fluorophore-enhanced, rep-PCR (HFERP) DNA fingerprint analysis. A total of 793 unique, non-clonal, E. coli isolates were obtained from the 513 human and animal hosts examined. Antibiotic resistance analysis, done using 14 antibiotics, indicated that 72.3% of the isolates (573 of 793) were found resistant to more than one antibiotic. The E. coli isolated from swine were resistant to the greatest number of antibiotics. Tetracycline resistant E. coli were routinely isolated from all animal hosts (36 to 77% per host), except for dairy cattle (9.3%). Twenty nine E. coli isolates from all hosts, except for duck, were resistant to more than 10 antibiotics. Gene transfer and southern hybridization studies revealed that resistance to 13 of the antibiotics was self-transmissible, and likely mediated by plasmids and integrons. Since genetically diverse and numerically abundant antibiotic-resistant E. coli were consistently recovered from chicken, swine and other domesticated animals in South Korea, our results suggest that the use of sub-therapeutic levels of antibiotics for disease prophylaxis and growth promotion should be curtailed.  相似文献   

16.
To understand the spread of microbial aerosols in pig houses, with Escherichia coli (E. coli) as indicator, the airborne E. coli in 4 pig houses and their surroundings at different points 10, 50 m upwind and 10, 50, 100, 200 and 400 m downwind respectively from the pig houses were collected, and the concentrations were calculated at each sampling point. Furthermore, the feces of pigs were collected to separate E. coli. The ERIC-PCR (Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction) technology was used to amplify the isolated E. coli DNA samples, then the amplified results were analyzed by NTSYS-pc (Version 2.10) to identify the similarity of isolated E. coli. The results showed that the airborne E. coli concentrations in indoor air of the 4 pig houses (21-35 CFU m3 air) were much higher than those in upwind and downwind air (P < 0.05), but there were no significant differences (P > 0.05) at downwind distances. The ERIC-PCR results also showed that 52.4% of the fecal E. coli (four houses being respectively 2/4, 50%; 2/4, 50%; 3/6, 50%; 4/7, 57.1%) were identical to the indoor airborne E. coli isolates, and there was more than 90% similarity between the majority of E. coli (50%, 21/42) isolated from downwind air at 10, 50, 100 and 200 m and those from indoor air or feces. It could be concluded that the aerosols in pig houses can spread to the surroundings, and thus effective measures should be taken to control and minimize the spread of microbial aerosols.  相似文献   

17.
The application of three turbulence models—standard kε, re-normalization group (RNG) kε and RNG-based large eddy simulation (LES) model—to simulate indoor contaminant particle dispersion and concentration distribution in a model room has been investigated. The measured air phase velocity data obtained by Posner et al. [Energy and Buildings 2003;35:515–26], are used to validate the simulation results. All the three turbulence model predictions have shown to be in good agreement with the experimental data. The RNG-based LES model has shown to yield the best agreement. The flow of contaminant particles (with diameters of 1 and 10 μm) is simulated within the indoor airflow environment of the model room. Comparing the three turbulence models for particle flow predictions, the RNG-based LES model through better accommodating unsteady low-Reynolds-number (LRN) turbulent flow structure has shown to provide more realistic particle dispersion and concentration distribution than the other two conventional turbulence models. As the experimental approach to access indoor contaminant particle concentration can be rather expensive and unable to provide the required detailed information, the LES prediction can be effectively employed to validate the widely used kε models that are commonly applied in many building simulation investigations.  相似文献   

18.
Microbial association with particles can significantly affect the fate and transport characteristics of microbes in aquatic systems as particle-associated organisms will be less mobile in the environment than their free phase (i.e. unattached) counterparts. As such, similarities or dissimilarities in the partitioning behavior of indicator organisms and pathogens may have an impact on the suitability of a particular indicator to act as a surrogate for a pathogen. This research analyzed the partitioning behavior of two pathogens (Cryptosporidium, Giardia) and several common indicator organisms (fecal coliform, Escherichia coli, Enterococci, Clostridium perfringens spores, and coliphage) in natural waters under both dry and wet weather conditions. Samples were taken from several streams in two distinct sampling phases: (i) single grab samples; and (ii) intrastorm samples obtained throughout the duration of four storms. Partitioning behavior varied by microbial type, with 15-30% of bacterial indicators (fecal coliform, E. coli, and Enterococci) associated with settleable particles compared to 50% for C. perfringens spores. Both pathogens exhibited similar levels of particle association during dry weather (roughly 30%), with increased levels observed during wet weather events (Giardia to 60% and Cryptosporidium to 40%). The settling velocities of particle-associated microbes were also estimated, with those of the bacterial indicators (fecal coliform, E. coli, and Enterococci), as well as C. perfringens spores, being similar to that of the Giardia and Cryptosporidium, suggesting these organisms may exhibit similar transport behavior. With respect to intrastorm analysis, the highest microbial concentrations, in both particle-associated and free phase, occurred during the earlier stages of a storm. The total loadings of both indicators and pathogens were also estimated over the course of individual storms.  相似文献   

19.
The analytical performance of 9 different PCR primer sets designed to detect Escherichia coli and Shigella in water has been evaluated in terms of ubiquity, specificity, and analytical detection limit. Of the 9 PCR primer sets tested, only 3 of the 5 primer sets targeting uidA gene and the primer set targeting tuf gene amplified DNA from all E. coli strains tested. However, of those 4 primer sets, only the primer set targeting the tuf gene also amplified DNA from all Shigella strains tested. For the specificity, only the primer sets targeting the uidA gene were 100% specific although the primer sets targeting 16S rRNA, phoE, and tuf genes only amplified Escherichia fergusonii as non-specific target. Finally, the primer set targeting the 16S-ITS-23S gene region, was not specific as it amplified DNA from many other Enterobacteriaceae species. In summary, only the assay targeting the tuf gene detected all E. coli/Shigella strains tested in this study. However, if it becomes important to discriminate between E. coli and E. fergusonii, assays targeting the uidA gene would represent a good choice although none of them were totally ubiquitous to detect of the presence of Shigella strains.  相似文献   

20.
Yanming Liu 《Water research》2010,44(3):711-718
Escherichia coli O157:H7, a causative agent of hemolytic uremic syndrome, can enter into a viable but nonculturable (VBNC) state when under stress. To date, it is unknown whether VBNC cells produce Shiga-like toxins (Stx). To address this question, we confirmed the expression of the stx1 and stx2 genes and the production of Stx in VBNC E. coli O157:H7 cells. To quantitatively assess the production of Stx in VBNC cells, we developed a Vero-cell microplate cytotoxicity assay based on the correspondence of the cytotoxicity of VBNC cells on Vero cells to the number of inoculated VBNC cells. Using this method, we found that all VBNC cells induced by river water, PBS buffer, deionized water, or chloraminated water retained the ability to produce Stx, and that they had differing levels of Stx. Both aged (19-month-old) VBNC cells induced by river water and fresh VBNC cells induced by chloraminated water showed very low half maximal inhibitory concentration (IC50; 6.6 × 104 and 7.1 × 104 respectively), corresponding to higher levels of toxins produced than VBNC cells induced by deionized water and PBS buffer. VBNC cells originating from different isolates may vary in Stx production, and the VBNC cells from bovine isolates produced higher levels of Stx than those from clinical isolates. These results demonstrate a potential health risk of VBNC E. coli O157:H7 in environmental water and the importance of monitoring VBNC E. coli O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号