首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
正为贯彻《国务院办公厅关于进一步加强"地沟油"治理工作的意见》(国办发[2017]30号)和《上海市餐厨废弃油脂处理管理办法》(市政府令第97号),维护本市餐厨废弃油脂收运处置体系正常运行,支持餐厨废弃油脂制生物柴油(B5)(以下简称"B5生物柴油")在本市加油站推广应用,提升餐厨废弃油脂资源化利用水平,保障食品安全,制定本管理办法。第一条:本市餐厨废弃油脂从收运、处置以及在加油站推广应用等各个环节,按照"闭环管理、市场化运作、  相似文献   

2.
为探究生物柴油在船舶柴油机上的适用性,基于六缸中速柴油机试验台架,在不同负荷推进特性工况下,对燃用0#柴油、B10生物柴油柴油机的动力性能、经济性能、振动特性和缸内燃烧特性进行对比分析。结果发现:与0#柴油相比,燃用B10生物柴油柴油机的输出功率和耗油量基本不变,耗油率有所升高,但随着负荷的升高有所改善,燃用B10生物柴油使得在25%负荷工况下的柴油机缸盖振动烈度下降,50%、75%、90%、100%负荷工况下的柴油机缸盖振动烈度稍有上升,不同负荷工况下的机体振动烈度均下降;从振动功率谱密度可以看出,两种燃油在不同负荷下低频段的振动响应相似,但高频段处振动响应存在差异;对两种燃油的缸内压力和压力升高率曲线的分析可知,燃用B10生物柴油可以使缸内压力峰值和最大压力升高率升高,燃烧反应速度加快。综上,B10生物柴油在不同负荷工况下动力性能、经济性能、振动特性和缸内燃烧特性方面均表现良好,在船舶柴油机上具有较好的应用前景。  相似文献   

3.
2013年3月1日起,《上海市餐厨废弃油脂处理管理办法》(下简称《办法》)正式实施。其实,早在2005年1月已出台了《上海市餐厨垃圾处理管理办法》,新《办法》与之相比有哪些改进呢?《办法》制定顺应现实需要随着餐厨废弃油脂具有了资源再利用性后,如可以作为生物柴油以及部分化工产品的原料,原有的《上海市餐厨垃圾处理管理办法》对  相似文献   

4.
雷曼云  杨建斌 《中国油脂》2023,48(10):77-80+115
为提高餐厨废弃油脂制生物柴油的储存稳定性,以餐厨废弃油脂为原料,采用生物酶法制备生物柴油,并向其中添加0.2%的抗氧化剂,测定其在90 d储存过程中酸值、水含量、硫含量及氧化安定性的变化。结果表明:酶法制备的生物柴油各项指标满足GB 25199—2017《B5柴油》中BD100生物柴油S10的技术要求,硫含量最低为2.1 mg/kg;当添加0.2%的抗氧化剂时,生物柴油的氧化安定性由3.6 h提高至12.0 h,储存90 d后,生物柴油的硫含量、酸值、水含量、氧化安定性仍符合国标要求。酶法制备生物柴油工艺易于控制产品的各项指标,且工艺更加绿色环保,通过添加抗氧化剂可提高生物柴油的储存稳定性。  相似文献   

5.
通过对餐厨废弃物的理化性质进行分析,为餐厨废弃物的处理提供一定的参考依据。研究结果表明,餐厨废弃物中固体废弃物约占18%,废弃油脂约占3%,餐厨废水约占79%;餐厨固体废弃物主要含有淀粉、粗蛋白和粗脂肪,分别占总质量的32%、20%和29%,可通过添加符合国家规定的微生物菌剂发酵转化为有机肥;餐厨废弃油脂酸价较高,平均为100 mg/g,其脂肪酸组成为:肉豆蔻酸、棕榈酸、棕榈油酸、硬脂酸、亚油酸、油酸和亚麻酸,其中含量最多是棕榈酸、亚油酸和油酸,占整个餐厨废弃油脂的质量百分数分别为21.8%、36.7%和31.7%,可通过甲酯化反应转化为生物柴油;餐厨废水中含油量为1 283 mg/L,SS(悬浮物)为738 mg/L,水样呈弱酸性,p H值6.25,需要进行生化处理才能达标排放。  相似文献   

6.
降低燃用生物柴油NOx排放量的分析   总被引:1,自引:1,他引:0  
在YL4102型柴油机上分别燃用生物柴油、石化柴油、生物柴油和石化柴油的混合物测定NOx的排放情况,并对降低NOx排放量的措施进行了研究。结果表明,适当推迟喷油提前角会降低NOx的排放,在满负荷范围时,当喷油提前角为10°CA左右时NOx排放降低30%左右。燃用乳化生物柴油可降低NOx的排放,随着乳化生物柴油中水的增加,NOx的排放迅速下降,当水的体积分数为30%时,NOx排放降低40%左右。  相似文献   

7.
通过分析废弃油脂来源及流通,以大豆油异黄酮类标志物为切入点,利用磁固相萃取液相色谱串联质谱分析法探究了异黄酮类标志物的热稳定性以及大豆异黄酮在食用植物油和餐厨废弃油脂中的分布。模拟反复加热实验结果表明,标志物经过14h持续加热,依然可以检出,热稳定性相对良好。对芝麻油、菜籽油、茶籽油、花生油、亚麻籽油、大豆油及餐厨废弃油脂中的异黄酮标志物含量测定分析后作聚类分析图,结果表明通过聚类分析可以将六种食用植物油以及废弃油脂区分开。大豆油中同时含有四种大豆异黄酮,而餐厨废弃油脂中含有黄豆苷元和染料木素,以及少量染料木苷,不含黄豆苷。其他食用植物油不含有或者不同时含有大豆异黄酮类化合物,利用含量关系可以将餐厨废弃油脂与其他食用油区分开。因此,黄豆苷元、染料木素可以作为餐厨废弃油脂标志物。以芝麻油为例,掺伪5%餐厨废弃油脂的芝麻油的色谱图中可明显观察到黄豆苷元、染料木素特征峰,表明该方法可靠有效,可以为餐厨废弃油脂检测和市场监管提供参考依据。  相似文献   

8.
生物柴油与石化柴油性能的比较分析   总被引:4,自引:1,他引:3  
从生产方法和工艺、燃料特性和起动性能、发动机经济性和动力性、排放特性以及可再生性方面比较了生物柴油与石化柴油的差异.结果表明,生物柴油与石化柴油在生产方法和工艺方面存在很大差异,也有很多相似之处;生物柴油的燃料特性、起动性能以及发动机经济性、动力性接近或稍逊于石化柴油;生物柴油具有更好的排放性能和可再生性,因此生物柴油是一种综合性能优良的可替代石化柴油的燃料.  相似文献   

9.
为了研究柴油/LNG双燃料柴油机的外特性,本文在1000rpm、1600rpm、2200rpm转速、负荷率为25%、50%、75%、100%条件下对实验室改装发动机的动力性、经济性及排放性能进行研究。试验结果表明:与纯柴油模式相比,在外特性工况下,柴油引燃LNG发动机的动力性与原机相当,经济性略优,HC和NOx的排放明显劣于原机,而碳烟、CO排放量低于原发动机;在低转速、低负荷下油耗率高于原机。  相似文献   

10.
在一台四冲程直喷式柴油机上对比研究不同喷油策略对鱼油乙酯生物柴油混合燃料燃烧和排放特性的影响。发动机转速固定在1 500 r/min,喷油正时分别在21、24、27°CA BTDC的不同负荷下,使用的6种燃料为柴油及B20、B40、B60、B80、B100的鱼油乙酯生物柴油混合燃料。结果表明:在不同喷油正时、不同负荷下,生物柴油与柴油相比,发动机的氮氧化物和碳烟排放最大降幅为17.9%和55.38%;鱼油制取的生物柴油导致气缸压力峰值、放热率和最大压力升高率均低于柴油,碳氢化合物、一氧化碳排放降低。  相似文献   

11.
A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The analysis and speciation of the soluble organic fraction of biodiesel particulate suggest that the carcinogenic potential of the biodiesel emissions is probably lower than that of petroleum diesel. Its better adaptivity and productivity in clay and sandy-type soils and in semiarid temperate climate and the fact that the performance of its derived biodiesel is quite similar to commercial biodiesel make B. carinata a promising oil crop that could offer the possibility of exploiting the Mediterranean marginal areas for energetic purposes.  相似文献   

12.
为了研究高原环境下生物柴油-乙醇-柴油混合燃料中生物柴油对柴油发动机性能的影响,选用纯柴油、B15E3(生物柴油体积分数为15%,乙醇体积分数为3%和柴油体积分数为82%)和B25E3(生物柴油体积分数为25%,乙醇体积分数为3%和柴油体积分数为72%)在柴油发动机YN30CR上进行试燃,在最大扭矩转速工况下比较3种燃料的燃烧性、经济性和排放性差异。结果表明:燃烧混合燃料的发动机动力性下降,B25E3下降明显,缸内压力峰值下降1 MPa,压力升高率峰值下降0.14 MPa/°CA;燃烧B15E3和B25E3的瞬时放热率峰值较纯柴油低4.8%、5.6%;当量燃油消耗量低于纯柴油,燃油经济性有一定改善;中低负荷下,纯柴油当量燃油消耗量最高,B25E3的当量燃油消耗量低于B15E3,高负荷下,燃烧B25E3的当量燃油消耗量稍高于B15E3;燃用B15E3和B25E3后,碳烟排放低于燃烧纯柴油,B25E3改善幅度大于B15E3,随着负荷的增加,碳烟排放性的改善较为明显。  相似文献   

13.
While the use of biodiesel appears to be a promising alternative to petroleum fuel, the replacement of fossil fuel by biofuel may not bring about the intended climate cooling because of the increased soil N2O emissions due to N-fertilizer applications. Using a life cycle assessment approach, we assessed the influence of soil nitrous oxide (N2O) emissions on the life cycle global warming potential of the production and combustion of biodiesel from canola oil produced in a semiarid climate. Utilizing locally measured soil N2O emissions, rather than the Intergovernmental Panel on Climate Change (IPCC) default values, decreased greenhouse gas (GHG) emissions from the production and combustion of 1 GJ biodiesel from 63 to 37 carbon dioxide equivalents (CO2-e)/GJ. GHG were 1.1 to 2.1 times lower than those from petroleum or petroleum-based diesel depending on which soil N2O emission factors were included in the analysis. The advantages of utilizing biodiesel rapidly declined when blended with petroleum diesel. Mitigation strategies that decrease emissions from the production and application of N fertilizers may further decrease the life cycle GHG emissions in the production and combustion of biodiesel.  相似文献   

14.
Biodiesel fuels, made from renewable resources, have emerged as viable alternatives to conventional diesel fuel, but their impact on emissions is not fully understood. This study examines elemental carbon (EC), organic carbon (OC), and polycyclic aromatic hydrocarbons (PAHs) emissions from cottonseed oil biodiesel (CSO-B100). Relative to normal diesel fuel, CSO-B100 reduced EC emissions by 64% (±16%). The bulk of EC emitted from CSO-B100 was in the fine particle mode (<1.4 μm), which is similar to normal diesel. OC was found in all size ranges, whereas emissions of OC(1.4-2.5) were proportionately higher in OC(2.5) from CSO-B100 than from diesel. The CSO-B100 emission factors derived from this study are significantly lower, even without aftertreatment, than the China-4 emission standards established in Beijing and Euro-IV diesel engine standards. The toxic equivalency factors (TEFs) for CSO-B100 was half the TEFs of diesel, which suggests that PAHs emitted from CSO-B100 may be less toxic.  相似文献   

15.
Chassis dynamometer tests were performed on seven light heavy-duty diesel trucks comparing the emissions of a California diesel fuel with emissions from four other fuels: ARCO emissions control diesel (EC-D) and three 20% biodiesel blends (one yellow grease and two soy-based). The EC-D and the yellow grease biodiesel blend both showed significant reductions in total hydrocarbons (THC) and carbon monoxide (CO) emissions over the test vehicle fleet. EC-D also showed reductions in particulate matter (PM) emission rates. NOx emissions were comparable for the different fuel types for most of the vehicles tested. The soy-based biodiesel blends showed smaller emissions differences over the test vehicles, including some increases in PM emissions. This is somewhat in contrast to previous studies that have shown larger reductions in THC, CO, and PM for biodiesel blends. The possible influence of different fuels, fuel properties, and engine load on emissions is also discussed.  相似文献   

16.
为提升燃料的综合燃烧品质和性能,进一步降低有害物质排放和缓解温室效应,以燃烧动力学和化学反应机制作为理论基础,采用Chemkin软件将生物柴油替代物和氨气充分融合,模拟并计算氨气掺混比例分别为0、5%、10%、15%、20%的5组燃料在均质压燃发动机模式下燃烧和排放指标的数值,对比分析得到不同掺混比例对发动机燃烧和排放的影响和变化规律。结果表明:随着氨气掺混比例增加,燃料的点火滞燃期有所缩短,缸内燃烧最高温度升高,排温降低;排放方面,NOx的排放升高,CO2、CO和总碳氢化合物(THC)的排放均明显降低;生物柴油掺混氨气的最佳比例为20%,此时发动机功率下降12百分点,NO的单位功率排放升高了0.003 kW-1,而CO2和THC的单位功率排放分别降低了0.01 kW-1和0.001 3 kW-1。综上,生物柴油掺混氨气后改善了燃烧性能,降低了排放量,具有良好的应用前景。  相似文献   

17.
The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.  相似文献   

18.
Our aim was to compare hazards of particles from combustion of biodiesel blends and conventional diesel (D(100)) in old and improved engines. We determined DNA damage in A549 cells, mRNA levels of CCL2 and IL8 in THP-1 cells, and expression of ICAM-1 and VCAM-1 in human umbilical cord endothelial cells (HUVECs). Viability and production of reactive oxygen species (ROS) were investigated in all cell types. We collected particles from combustion of D(100) and 20% (w/w) blends of animal fat or rapeseed oil methyl esters in light-duty vehicle engines complying with Euro2 or Euro4 standards. Particles emitted from the Euro4 engine were smaller in size and more potent than particles emitted from the Euro2 engine with respect to ROS production and DNA damage, but similarly potent concerning cytokine mRNA expression. Particles emitted from combustion of biodiesel blends were larger in size, and less or equally potent than particles emitted from combustion of D(100) concerning ROS production, DNA damage and mRNA of CCL2 and IL8. ICAM-1 and VCAM-1 expression in HUVECs was only increased by D(100) particles from the Euro4 engine. This suggests that particle emissions from biodiesel in equal mass concentration are less toxic than conventional diesel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号