首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Functionalization of multi-walled carbon nanotubes (MWCNTs) by glucose was performed through esterification reaction. The reaction was carried out in water, in the presence of N,N′-carbonyldiimidazole as a catalyst. Glucose-functionalized MWCNTs (MWCNTs-Gl) were characterized by a set of methods including Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning, and transmission electron microscopy. Thermogravimetric analysis (TGA) results also demonstrated the presence of organic portions of the functionalized MWCNTs. MWCNT-Gl/poly(amide-imide) (PAI) composite films with different MWCNTs-Gl content (5, 10, and 15 wt%) were prepared by ultrasonication-assisted solution blending method. Microscopic observations showed that the dispersion of the MWCNTs-Gl was improved by the organic groups on the MWCNT surface and functional groups on the PAI. TGA results showed that the hybrid films exhibited a good thermal stability. According to mechanical tensile tests, the tensile strength and the Young’s modulus of the MWCNT-Gl/PAI composites were increased with increasing MWCNTs-Gl content.  相似文献   

2.
Microstructural characterization of corn starch‐based porous thermoplastic (TPS) composites containing various contents (0.1, 0.5, and 1 wt %) of multiwalled carbon nanotubes (MWCNTs) was performed. Corn starch was plasticized with a proper combination of glycerol and stearic acid. TPS composites with MWCNT were prepared conducting melt extrusion followed by injection molding. TPS containing 1 wt % of MWCNTs exhibited higher tensile strength and elastic modulus values than neat TPS. Moreover, TPS electrical conductivity was determined to increase with increasing content of MWCNTs. X‐ray diffraction measurements revealed that incorporation of MWCNTs increased the degree of TPS crsystallinity to some extent. Scanning electron microscopy examination revealed that MWCNT altered TPS surface morphology and tensile failure modes, significantly. Transmission electron microscopy investigation showed that dispersion characteristics of MWCNTs within TPS were in the form of tiny clusters around micro pores of TPS, which is considered influential on electrical conductivity of the resulting composites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
The high compatibility of amino-acid based poly(amide–imide) (PAI) as a polymer matrix for acid-modified multi-walled carbon nanotubes (MWCNTs) is discussed. PAI was synthesized from the direct polycondensation reaction of N,N′-(pyromellitoyl)-bis-l-isoleucine with a dopamine-based diamine, 3,5-diamino-N-(3,4-dihydroxy-phenethyl)benzamide, in a medium consisting of a molten salt, tetrabutylammonium bromide, and triphenyl phosphite as the activator under microwave radiation. To obtain a homogeneous dispersion of MWCNTs in the PAI matrix, acid-functionalized MWCNTs were used. Composites containing 5, 10, and 15 wt.% MWCNT–COOH exhibited a relatively good dispersion on the macroscopic scale. MWCNT/PAI composite films have been prepared by casting a solution of precursor polymer containing MWCNTs into a thin film and its tensile properties examined. Incorporation of MWCNTs improved the mechanical properties significantly. Composites were also characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, and thermal gravimetric analysis. The thermal stability of the composites containing the CNTs was improved due to the increased interfacial interaction between the PAI matrix and the modified CNTs and their good dispersion.  相似文献   

4.
Functionalization of multi-walled carbon nanotubes (MWCNTs) plays an important role in eliminating nanotube aggregation for reinforcing polymeric materials. We prepared a new class of natural rubber (NR)/MWCNT composites by using latex compounding and self-assembly technique. The MWCNTs were functionalized with mixed acids (H2SO4/HNO3 = 3:1, volume ratio) and then assembled with poly (diallyldimethylammonium chloride) and latex particles. The Fourier transform infrared spectroscopy, transmission electron microscopy, and scanning electron microscopy were used to investigate the assembling mechanism between latex particles and MWCNTs. It is found that MWCNTs are homogenously dispersed in the natural rubber (NR) latex as individual nanotubes since strong self-aggregation of MWCNTs has been greatly depressed with their surface functionalization. The well-dispersed MWCNTs produce a remarkable increase in the tensile strength of NR even when the amount of MWCNTs is only 1 wt.%. Dynamic mechanical analysis shows that the glass transition temperature of composites is higher and the inner-thermogenesis and thermal stability of NR/MWCNT composites are better, when compared to those of the pure NR. The marked improvement in these properties is largely due to the strong interfacial adhesion between the NR phase and MWCNTs. Functionalization of MWCNTs represents a potentially powerful technology for significant reinforcement of natural rubber materials.  相似文献   

5.
This study investigates the effect of the thiol‐ene click reaction on thermal conductivity and shear strength of the epoxy composites reinforced by various silane‐functionalized hybrids of sulfhydryl‐grafted multi‐walled carbon nanotubes (SH‐MWCNTs) and vinyl‐grafted MWCNTs (CC‐MWCNTs). The results of Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM) show that the sulfhydryl groups and vinyl groups are successfully grafted onto the surface of MWCNTs, after treatment of MWCNT with triethoxyvinylsilane and 3‐mercaptopropyltrimethoxysilane, respectively. Scanning electron microscopy (SEM), HotDisk thermal constant analyzer (HotDisk), optical microscope, and differential scanning calorimetry (DSC) are used to characterize the resultant composites. It is demonstrated that the hybrid of 75 wt % SH‐MWCNTs and 25 wt % CC‐MWCNTs has better dispersion and stability in epoxy matrix, and shows a stronger synergistic effect in improving the thermal conductivity of epoxy composite via the thiol‐ene click reaction with 2,2′‐azobis(2‐methylpropionitrile) as thermal initiator. Furthermore, the tensile shear strength results of MWCNT/epoxy composites and the optical microscopy photographs of shear failure section indicate that the composite with the hybrid MWCNTs has higher shear strength than that with raw MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44579.  相似文献   

6.
In the present investigation, for the first time, functional optically active poly(amide-imide) (PAI)/organonanosilica bionanocomposite films were successfully fabricated through solution intercalation technique. At the start, Cloisite Na+ and protonated form of l-tyrosine amino acid were used for the preparation of the novel chiral organoclay via ion-exchange reaction. Then, PAI containing phenylalanine amino acid was synthesized via solution polycondensation of N,N’-(pyromellitoyl)-bis-phenylalanine diacid chloride (5) with 4,4′-diaminodiphenylsulfone (6). This polymer was end-capped with amine end groups near the completion of the reaction to interact chemically with organoclay. Finally, PAI/organ-nanosilica bionanocomposites films containing 5, 10 and 15% of organoclay were prepared via solution intercalation method through blending of organoclay with the PAI solution. The nanostructures and properties of the PAI/organoclay hybrids were investigated using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetry analysis (TGA) techniques. XRD, FE-SEM and TEM results revealed the formation of exfoliated and intercalated organoclay platelets in the PAI matrix. TGA results indicated that the addition of organoclay into the PAI matrix increases in the thermal decomposition temperatures of the resulted bionanocomposites. The transparency of the nanocomposite films decreased gradually by the addition of organoclay, and the films became semitransparent as well as brittle at high loading of organoclay. Mechanical data indicated improvement in the tensile strength and modulus with organoclay loading. The film containing a 10 wt.%. of organoclay had a tensile strength of the order of 85.24 MPa relative to the 67.52 MPa of the pure PAI.  相似文献   

7.
Jiangsong Zhang  Ruiying Luo  Caili Yang 《Carbon》2012,50(13):4922-4925
Multi-wall carbon nanotubes (MWCNTs) were chemically functionalized by 3-aminpropyltriethoxysilane and used to increase the strength and stiffness of an adhesive for joining carbon/carbon (C/C) composites. The silanized MWCNTs were uniformly dispersed in the adhesive with a good interface adhesion between them. When the content of silanized MWCNTs in the adhesive was 0.2 wt.%, average shear strength of the C/C joint was 10.40 MPa, which was 31% higher than that of neat C/C composites. The adhesive could be cured at room temperature with good heat-resistant property. The MWCNTs reacted with B4C filler to establish strong B–O–C bond with C/C substrate.  相似文献   

8.
Weiguo Shao  Feng Wang  Yinghong Chen 《Carbon》2006,44(13):2708-2714
The cutting of multi-walled carbon nanotubes (MWCNTs) using solid state shear milling (S3M) method and their strong interfacial interaction with polyamide 6 (PA6) in the solid state were studied. Transmission electron microscopy showed that after milling, the CNTs were greatly reduced in length, and disentangled, being straighter with open ends. Fourier transform infrared spectra and differential scanning calorimeter analysis indicated the existence of strong interfacial interactions between MWCNTs and PA6 of the pan-milled PA6/CNTs powder. It was further quantified by thermogravimetric analysis that about 30 wt.% of PA6 formed a strong combining force with CNTs after pan-milling. The mechanism of cutting CNTs and the reason for their strong interfacial interactions with PA6 in the solid state were discussed. A fine and homogeneous dispersion of CNTs throughout PA6 matrix was observed by scanning electron microscopy. The tensile properties of the composites prepared by the S3M method were significantly improved compared to those of pure PA6 and composites prepared by conventional melt mixing. Upon incorporation of only 1.5 wt.% MWCNTs, the tensile modulus of PA6 was enhanced from 2448 MPa to 4439 MPa, by about 80%, and the tensile strength was increased by about 23%.  相似文献   

9.
The toughness of cycloaliphatic epoxy resin 3,4‐epoxycyclohexylmethyl‐3′,4′‐epoxycyclohexane carboxylate (ERL‐4221) has been improved by using multiwalled carbon nanotubes (MWCNTs) treated by mixed acids. The MWCNT/ERL‐4221 composites were characterized by Raman spectroscopy and their mechanical properties were investigated. A significant increase in the tensile strength of the composite from 31.9 to 55.9 MPa was obtained by adding only 0.05 wt % of MWCNTs. And a loading of 0.5 wt % MWCNTs resulted in an optimum tensile strength and cracking energy, 62.0 MPa and 490 N cm, respectively. Investigation on the morphology of fracture surface of the composites by field emission scanning electron microscopy demonstrated the crack pinning‐front bowing and bridging mechanisms of toughening. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
In this work, multiwalled carbon nanotubes (MWCNTs), as reinforcing agent, were blended with linear low‐density polyethylene (LLDPE), then molded by hot compression molding to prepare LLDPE/MWCNTs composites. Tensile tests indicate that the strength, Young's modulus, and toughness are all improved for LLDPE/MWCNTs composites containing 1 and 3 wt % MWCNTs. Compared with LLDPE, the Young's modulus of LLDPE/MWCNTs composites rises from 144.8 to 270.8 MPa at 1 wt % MWCNTs content. At the same time, increases of 18.5% in tensile strength and 16.6% in yield strength are achieved. Additionally, its toughness is enhanced by 26.7% than that of LLDPE. Microstructure characterizations, including differential scanning calorimetry, X‐ray diffraction, and scanning electron microscopy were performed to investigate the variations of microstructure and further to establish the relationship between microstructure and mechanical properties. Homogeneous dispersion of MWCNTs, network formation, and development of an oriented nanohybrid shish‐kebab structure contribute to the enhanced strength and toughness. The increased crystallinity is beneficial to the reinforcement and increased modulus. Additionally, the thermal stability of the LLDPE/MWCNTs composites is enhanced as well. This work suggests a promising routine to optimize polymer/MWCNTs composites by tailoring the structural development. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45525.  相似文献   

11.
In this research, Araldite 2011 has been reinforced using different weight fractions of Reduced Graphene Oxide (RGO). Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses were conducted and it has been shown that introduction of the RGO greatly changes the film morphology of the neat adhesive. Uni-axial tests were carried out to obtain the mechanical characteristics of the adhesive-RGO composites. It has been observed that introducing 0.5 wt% RGO enhances the ultimate tensile strength of the composites by 30%. In addition, single lap joints using neat adhesive and adhesive-RGO composites were fabricated to investigate the effect of the added RGO on the lap shear strength of the joints. Results show that the joints with added 0.5 wt RGO exhibited 27% higher lap shear strength compared to the joints bonded with neat adhesive. Finally, Finite Element (FE) numerical solutions using Cohesive Zone Modeling (CZM) have been carried out to simulate the failure behavior of the joints, and it has been shown that the FE models can predict the joint’s failure load.  相似文献   

12.
The effects of different surfactants on the properties of multiwalled carbon nanotubes/polypropylene (MWCNT/PP) nanocomposites prepared by a melt mixing method have been investigated. Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as a means of noncovalent functionalization of MWCNTs to help them to be dispersed uniformly into the PP matrix. The effects of these surfactant‐treated MWCNTs on morphological, rheological, thermal, crystalline, mechanical, and electrical properties of MWCNT/PP composites were studied using field emission scanning electron microscopy, optical microscopy, rheometry, tensile, and electrical conductivity tests. It was found that the surfactant‐treatment and micromixing resulted in a great improvement in the state of dispersion of MWCNTs in the polymer matrix, leading to a significant enhancement of Young's modulus and tensile strength of the composites. For example, with the addition of only 2 wt % of SDS‐treated and NaDDBS‐treated MWCNTs, the Young's modulus of PP increased by 61.1 and 86.1%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Carbon nanotubes (CNTs), with their high aspect ratio and exceptionally high mechanical properties, are excellent fillers for composite reinforcement if they are uniformly dispersed without aggregation. Combining the latex compounding and self-assembly techniques, we prepared a novel natural rubber (NR)/multiwalled carbon nanotube (MWCNT) composite. Before self-assembly, the MWCNTs were treated with mixed acid to ensure that the MWCNTs were negatively charged under an alkaline environment. The structure of the MWCNTs was tested with Fourier transform infrared spectroscopy. The properties of composites with different MWCNT loadings were characterized with transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and tensile testing. The results indicate that the MWCNTs were homogeneously distributed throughout the NR matrix as single tubes and had good interfacial adhesion with the NR phase when the MWCNT loading was less than 3 wt %. In particular, the addition of the MWCNT led to a remarkable reinforcement in the tensile strength, with a peak value of 31.4 MPa for an MWCNT content of 2 wt %, compared to the pure prevulcanized NR (tensile strength = 21.9 MPa). The nanocomposites reinforced with MWCNTs should have wide applications because of the notable improvement in these important properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
《Ceramics International》2023,49(13):21667-21677
In recent years, researchers have been interested in incorporating inorganic nanoparticles into thermosetting epoxy composites to improve their mechanical properties. This research explores the diffusion of ball milled zircon (ZrSiO4) and anatase TiO2 nanoparticles with glass fibre reinforced epoxy polymer (GFRP) composites at the same weight percentages (0:0, 2.5:2.5, 5:5, and 7.5:7.5) to improve mechanical properties. The ZrSiO4 and TiO2 nanoparticles were prepared by an ultrasonic liquid processor, and composites were fabricated using the compression molding technique. The void percentage was calculated from the theoretical and measured densities of composites. Mechanical tests were conducted in accordance with ASTM standards. The particle sizes of zircon and titanium dioxide were calculated as 70.5 nm and 64.5 nm, respectively, using field emission scanning electron microscopy (FESEM), which reveals the fibre pullout, damaged interfaces, filler dispersion, and voids in specimens. The chemical composition, crystalline structure, and size were determined using X-ray diffraction (XRD). It was found that the GFRP composite with Zircon and TiO2 incorporated at a concentration of 5:5 wt% has a greater tensile strength of 74.34%, a tensile modulus of 18.14%, a flexural strength of 33.55%, a flexural modulus of 33.61%, a shore "D" hardness of 4.66%, and a capacity to absorb energy of 61.14% in notched specimens with neat GFRP. With filler addition, the percentage of elongation at failure in the 5:5 wt percent for the tensile test is 44.36%, and the flexural test is 24.38% higher than the neat sample. Hence, this work improves the GFRP composites' mechanical and structural properties.  相似文献   

15.
Co-continuous polycarbonate (PC)/poly(styrene-acrylonitrile) (SAN) = 60/40 wt.% blends were filled with 1 wt.% multi-walled carbon nanotubes (MWCNTs), which selectively localized within the PC component. To study the influence of the viscosity ratio, PCs with different viscosities were selected resulting in PC/SAN viscosity ratios (at 100 rad/s) between 1.2 and 4.5. With increasing viscosity ratio, smaller blend structures were observed. Furthermore, optical microscopy revealed that the filler dispersion was improved with decreasing PC viscosity. The highest electrical conductivity was achieved for the blend composite with the coarsest morphology, containing the low viscosity PC and having the lowest PC/SAN viscosity ratio. Transmission electron microscopy analysis indicated that for the composite prepared with high viscosity PC, not all of the incorporated MWCNTs were able to localize completely into the PC component. Instead, some MWCNTs were found to be stacked at the interface of the two polymers, indicating that the high PC melt viscosity had a restricting effect on the movement of the MWCNTs. Moreover, with electrical conductive atomic force microscopy, it was proven that small, spherical PC particles, even if filled with CNTs, do not take part in the conductive network of the blend composites. Rheological analyses showed a correlation with the morphological analysis and the electrical conductive behavior of the blend composites. In summary, a lower viscosity ratio between the blend components, in which upon addition due to thermodynamic reasons the CNTs localize (here PC), and the other component (here SAN) is favorable for high electrical conductivity values.  相似文献   

16.
Poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWCNTs) with different MWCNTs loadings have been prepared by in situ polymerization of ethylene glycol (EG) containing dispersed MWCNTs and terephthalic acid (TPA). From scanning electronic microscopy images of nanocomposites, it can be clearly seen that the PET/MWCNTs composites with low‐MWCNTs contents (0.2 and 0.4 wt %) get better MWCNTs dispersion than analogous with high‐tube loadings (0.6 and 0.8 wt %). The nonisothermal crystallization kinetics was analyzed by differential scanning calorimetry using Mo kinetics equation, and the results showed that the incorporation of MWCNTs accelerates the crystallization process obviously. Mechanical testing shows that, in comparison with neat PET, the Young's modulus and the yield strength of the PET nanocomposites with incorporating 0.4 wt % MWCNTs are effectively improved by about 25% and 15%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The ultrasonically assisted preparation and characterization of poly(amide‐imide) (PAI) composites containing functionalized multi‐walled carbon nanotubes (MWCNTs) are reported. To improve the dispersion in and compatibility with the polymer matrix, the MWCNTs were surface‐modified with p‐aminophenol (p‐AP) under microwave irradiation. The process is fast, one‐pot, easy and results in a high degree of functionalization as well as dispersibility in organic solvents. The p‐AP‐functionalized MWCNTs (MWCNTs‐AP) were analysed by means of field emission and transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction and thermogravimetric analysis (TGA). The results consistently confirm the formation of p‐AP functionalities on MWCNTs which are able to undergo additional reactions, while the structure of the MWCNTs remains relatively intact. MWCNTs‐AP/PAI hybrid films were prepared with various MWCNTs‐AP contents (5–15 wt%) using a solution‐casting technique. Microscopic observations show that the dispersion of the MWCNTs‐AP is improved as a result of the organic groups on the MWCNT surface and functional groups in the PAI structure. The properties of the obtained composites were characterized extensively using the aforementioned techniques. TGA results show that the hybrid films exhibit a good thermal stability. Tensile mechanical testing was performed for the prepared composites, the results of which indicate an increase in the elastic modulus and tensile strength with increasing MWCNTs‐AP content. © 2013 Society of Chemical Industry  相似文献   

19.
Nanocomposites of isotactic polypropylene (iPP) and multiwalled carbon nanotubes (MWCNTs) with various contents of MWCNTs were fabricated by double molding techniques. X‐ray diffraction measurements reveal a development of α‐crystal with lamellar stacks having a long period of 150 Å in the neat iPP that increases to 165 Å in 2 wt % MWCNTs‐loaded composites, indicating that MWCNTs enhance crystallization of iPP as a nucleating factor. Mechanical properties, such as tensile strength, flexural strength, Young's modulus, tangent modulus, and microhardness are found to increase with increasing MWCNTs content. Thermal analyses represent an increase of crystallization and melting temperatures and a decrease of thermal stability of the composites with increasing MWCNTs. Changes in structural, mechanical, and thermal properties of the composites due to the addition of MWCNTs are elaborately discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
In this work, we analyzed tensile properties of polypropylene‐multiwalled carbon nonotubes composite fibers. The multiwalled carbon nanotubes (MWCNTS) were used in different contents of 0, 1, 2, 3, 4, and 5 wt %. Dispersing agents were used to disperse MWCNTs in polypropylene matrix. After the dispersing agent was removed, the mixture was melt mixed. The fibers were spun by a home‐made melt spinning equipment and stretching was done at a draw ratio of 7.5. By using 1–5 wt % of MWCNTs, the modulus of composite fibers increased by 69–84% and tensile strength increased about 39% when compared with the virgin polypropylene fibers. In addition, the MWCNTs dispersion in the matrix was monitored by scanning electron microscopy and transmission electron microscopy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号