首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Raju Francis  C.P. Jijil  C.H. Suresh 《Polymer》2007,48(22):6707-6718
The stimuli sensitive copolymer NIPAM-co-MI was prepared by copolymerizing NIPAM (N-isopropylacrylamide) with varying concentrations of maleimide (MI). The copolymer showed the same ratio of the monomeric components as that of the initial monomer feed ratio, with the two components arranged in the chain in a purely random sequence. Interestingly, the lower critical solution temperature (LCST) of NIPAM-co-MI was found to decrease with increase in MI loading in the copolymer. This behavior was in drastic contrast to the LCST behavior of a similar copolymer NIPAM-co-MA of NIPAM and maleic anhydride (MA) where the LCST showed an increase with increase in the MA concentration. A theoretical interpretation of the contrasting LCST behavior of both NIPAM-co-MI and NIPAM-co-MA was obtained by quantum mechanical (QM) modeling on small structural units of the polymers as well as molecular dynamic (MD) simulations at LCST and above the LCST on 50-unit oligomer model of the polymers. The QM models showed that the MI based polymer is more inclined towards bend structure, higher hydration, and higher intramolecular hydrogen bond formation between its monomer units when compared to those of the MA based polymer. The results of the large scale MD simulation was in complete support of the QM results as it showed the formation of a more folded and highly hydrated NIPAM-co-MI than NIPAM-co-MA.  相似文献   

2.
A series of poly(hexamethylene terephthalate-co-hexamethylene 2,6-naphthalate) (P(HT-co-HN)) random copolymers were synthesized by melt polycondensation and characterized using 1H NMR spectroscopy and viscometry. Their cocrystallization behavior was investigated using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) method. Even though the P(HT-co-HN) copolymers synthesized are statistically random copolymers, they show a clear melting and a crystallization peak in DSC thermograms over the entire range of copolymer composition and have a minimum melting temperature in the plot of melting temperature versus copolymer composition. WAXD patterns of all the copolymer samples show sharp diffraction peaks and are largely divided into two groups, i.e. PHT type and PHN type crystals. In addition, WAXD patterns of the PHN type crystals are subdivided into two types of PHN α and PHN β according to the copolymer composition. These facts indicate that the P(HT-co-HN) copolymers show isodimorphic cocrystallization. The composition at which the crystal transition between PHT type and PHN type occurs is equivalent to the eutectic composition (22 mol% HN content) for the melting temperature. When the defect free energies were calculated by using the equilibrium inclusion model proposed by Wendling and Suter, the defect free energies in the case of incorporation of HT units in the PHN α and β crystals were higher than the case of incorporation of HN units in the PHT crystal lattice.  相似文献   

3.
Min Li  Zhiguo Zhang  Koon-Gee Neoh 《Polymer》2010,51(15):3377-2101
“Comb-like” graft copolymers, consisting of a poly((N-vinylcarbazole)-co-(4-vinylbenzyl chloride)) (P(NVK-co-VBC)) copolymer backbone from free radical polymerization and poly(((2-dimethylamino)ethyl methacrylate)-co-(tert-butyl acrylate)) (P(DMAEMA-co-tBA)) side chains from atom transfer radical polymerization (ATRP), were hydrolyzed to produce the acrylic acid (AAc)-containing “comb-like” graft copolymers of P(NVK-co-VBC)-comb-P(DMAEMA-co-AAc). The amphiphilic copolymers possess a fluorescent hydrophobic P(NVK-co-VBC) backbone and pH-sensitive hydrophilic P(DMAEMA-co-AAc) side chains. Arising from acid-base interaction of the hydrophilic side chains, the copolymers can self-assemble into pH-responsive fluorescent and multi-walled hollow vesicles of well-defined morphology in aqueous media. The size and layered wall thickness of the vesicles are also dependent on the length of the copolymer side chains, while the number of wall layers is dependent on the concentration of the vesicles in the aqueous media. In comparison, a N-isopropylacrylamide (NIPAAm)-containing comb-like amphiphilic copolymer (P(NVK-co-VBC)-comb-P(NIPAAm-co-DMAEMA)) of similar structure, albeit with non-interacting hydropholic side chains, self-assembles only into temperature and pH-responsive single-shelled hollow nanoparticles in aqueous media.  相似文献   

4.
Zhiqiang Cao  Peng Gao  Hexian Li 《Polymer》2005,46(14):5268-5277
Poly(N-isopropylacrylamide-co-vinyl laurate)(PNIPAAm-co-VL) copolymers were prepared at various feed ratios via conventional radical random copolymerization. The formation, composition ratios and molecular weight of copolymers were examined. The thermoresponsive behaviors of PNIPAAm and PNIPAAm-co-VL solutions at low and high concentrations were intensively investigated by turbidity measurement, Micro-DSC, temperature-variable state fluorescence, 1H NMR and dynamic light scattering (DLS). Several important results were obtained that (1) incorporation of PVL results in much lower and broader LCST regions of the copolymer solutions, and facilitates the formation of hydrophobic microdomains far below LCST, causing a pronounced aggregation in solutions (2) temperature-variable 1H NMR spectra shows that during the phase transition, the ‘penetration’ of PNIPAAm into the hydrophobic core is a process accompanied with a transition of isopropyl from hydration to dehydration as well as a self-aggregation of hydrophobic chains at different temperature stages (3) according to the 1H NMR spectra of polymer solutions obtained at varied temperatures, the microdomains from hydrophobic VL moieties have a different accessibility for isopropyl groups and the entire chains during phase transition (4) temperature-variable DLS demonstrates that the temperature-induced transition behavior of copolymers is supposedly divided into three stages: pre-LCST aggregation (<20 °C), coil-globule transition at LCST (20-25 °C) and post-LCST aggregation (>25 °C).  相似文献   

5.
In this work, the motional dynamics and relaxation behavior of a series of model poly(dimethylsiloxane)-co-meta-carborane (PDMS-co-CB) hybrid elastomers have been studied in depth, using Broadband Dielectric Spectrometry over a temperature range of −130 to 100 °C and a frequency window of 10−1 to 107 Hz. The segmental α-relaxation of both the PDMS and carborane chain segments has been characterized at specific carborane backbone incorporation levels. A direct correlation between the ratio of PDMS to carborane segments and the motional constraint of the network as a whole was observed. In addition to the study of the α-motional modes associated with local intra-segmental motions and the onset of cooperative motion, we have also identified and studied a higher order cooperative (normal-mode) motion of extended segments of the carborane–siloxane co-polymer chains at elevated temperatures. These normal mode motions have been shown to follow an Arrhenius temperature dependence, are sensitive to the local chemical environment and have not been previously reported in this class of polysiloxane copolymer. The motional dynamics of the PDMS-co-CB networks have been compared and contrasted with those of a series of conventionally filled PDMS–Boron Nitride (PDMS–BN) composite systems. While the effects of the chemically bound carborane segment on the PDMS chain dynamics, local order and global network properties have been shown to be directly correlated, significant and predictable, the effects of the BN filler on the PDMS matrix are significantly less so and the results suggest that the filler material may in fact be disrupting the network order, with a consequently negative impact on the properties of the composite.  相似文献   

6.
Xingtian Yang  Zhirong Xin 《Polymer》2009,50(16):4089-5707
Poly(?-caprolactone)-block-poly(butadiene-co-acrylonitrile)-block-poly(?-caprolactone) triblock copolymer was synthesized via the ring-opening polymerization of ?-caprolactone with dihydroxyl-terminated butadiene-co-acrylonitrile random copolymer. The amphiphilic block copolymer was used to toughen epoxy thermosets via the formation of nanostructures. The morphology of the thermosets was investigated by means of atomic force microscopy, transmission electronic microscopy and small-angle X-ray scattering. It was judged that the formation of the nanostructures in the thermosets follows the mechanism of reaction-induced microphase separation. The thermal and mechanical properties of the nanostructured thermosets were compared to those of the ternary blends composed of epoxy, poly(butadiene-co-acrylonitrile) and poly(?-caprolactone) with the identical content of the modifiers. It is noted that at the same composition the nanostructured thermosets displayed higher glass transition temperatures (Tgs) than the ternary blends, which was evidenced by dynamic mechanical analysis. The fracture toughness of the thermosets was evaluated in terms of the measurement of critical stress field intensity factor (K1C). It is noted that at the identical composition the nanostructured blends significantly displayed higher fracture toughness than the ternary blends. In addition, the K1C of the nanostructured thermosets attained the maximum with the content of the modifier less than their counterpart of ternary blending.  相似文献   

7.
Chun-Yi Chiu 《Polymer》2007,48(5):1329-1342
We have used DSC, FTIR spectroscopy, and ac impedance techniques to investigate the interactions that occur within complexes of poly(vinylpyrrolidone-co-methyl methacrylate) (PVP-co-PMMA) and lithium perchlorate (LiClO4) as well as these systems' phase behavior and ionic conductivities. The presence of MMA moieties in the PVP-co-PMMA random copolymer has an inert diluent effect that reduces the degree of self-association of the PVP molecules and causes a negative deviation in the glass transition temperature (Tg). In the binary LiClO4/PVP blends, the presence of a small amount of LiClO4 reduces the strong dipole-dipole interactions within PVP and leads to a lower Tg. Further addition of LiClO4 increases Tg as a result of ion-dipole interactions between LiClO4 and PVP. In LiClO4/PVP-co-PMMA blend systems, for which the three individual systems—the PVP-co-PMMA copolymer and the LiClO4/PVP and LiClO4/PMMA blends—are miscible at all compositional ratios, a phase-separated loop exists at certain compositions due to a complicated series of interactions among the LiClO4, PVP and PMMA units. The PMMA-rich component in the PVP-co-PMMA copolymer tends to be excluded, and this phenomenon results in phase separation. At a LiClO4 content of 20 wt% salt, the maximum ionic conductivity occurred for a LiClO4/VP57 blend (i.e., 57 mol% VP units in the PVP-co-PMMA copolymer).  相似文献   

8.
A novel acrylic terpolymer with pendant perfluoropolyether (PFPE) segments has been synthesized and fully characterized. By hexamethylene diisocyanate functional groups PFPE monofunctional macromonomers have been grafted on a poly(butyl methacrylate-co-hydroxyethyl acrylate-co-ethyl acrylate) random terpolymer. Such grafted copolymer behaves like an interface-active material, since the perfluoropolyether segments in solvent cast films rearrange themselves at the air-polymer interface by surface segregation. In addition, blends of the above graft copolymer with acrylic base polymers (either the terpolymer itself or a commercial copolymer) have been examined in terms of surface segregation and fluorine enrichment of the external layers.The critical surface tension, γc, of solid films made of the neat graft copolymer as well as of the polymer blend has been evaluated by contact angle measurements and Zisman plots. Even a small addition (5 wt%) of the fluorinated copolymer to the acrylic component has been found very effective in lowering the surface tension. The outermost surface composition has been investigated by XPS technique, confirming the strong fluorine enrichment. Furthermore, SEM and EDX analyses have been performed on cross-sectioned films, showing that in the above polymer blends macrophase surface segregation has originated a thick layer made of fluorinated copolymer close to the air-polymer interface.  相似文献   

9.
Here, we report the first synthesis of water soluble poly(N-isopropylacrylamide-co-N,N′-dimethylacrylamide sulfide) copolymers via conventional interfacial polycondensation method using phase transfer catalyst (PTC). The effect of various kinds of PTC having different aliphatic chain length and counter ion were employed to examine the kinetics of polysulfide polymer formation. The reactivity ratios, determined employing extended Kelene–Tüdös method using feed composition obtained from 1H NMR analysis, suggest that N-isopropylacrylamide (NIPAM) is more reactive than N,N′-dimethylacrylamide (DMA) in both mono- and di-sulfide polymers. Thermal transition behavior investigated by differential scanning calorimetry (DSC) demonstrated that as the sulphur rank of the sulfide main chain linkages increased, the flexibility of the polymers increased reflected by lower glass transition temperature (Tg) values. The thermal degradation behavior and the major degradation products have been characterized by thermogravimetric analysis (TGA) and electron-impact mass spectroscopy (EI-MS), respectively. Both the studies reveal that the degradation takes place due to weak-link scission of the polymeric main chain. Solubility in water and in most of the common organic solvents even after the sulphur rank increased from 1 to 2 in the main chain, is expected to render potential applications in biological field as well as in industry for these interesting new class of polymers.  相似文献   

10.
W. LiH. Zhao  P.R. Teasdale  R. John 《Polymer》2002,43(17):4803-4809
A poly(acrylamidoglycolic acid-co-acrylamide) [poly(AAGA-co-AAm)] hydrogel was prepared by copolymerising 2-acrylamidoglycolic acid (AAGA) with acrylamide (AAm). The copolymer hydrogel composition and structure was characterised by FTIR spectroscopy and elemental microanalysis and found to contain 3.5 AAGA monomer units for each AAm monomer unit. This was similar to the monomer ratios used in the synthesis. The metal ion binding properties of the hydrogel were characterised for a range of metal ions (Cu2+, Cd2+, K+, Na+, Mg2+ and Ca2+) under varying conditions of pH, ionic strength, metal concentration and time. The hydrogel was shown to bind Cu2+ and Cd2+ strongly under non-competitive binding conditions, with binding capacities of 5.3 and 5.1 μmol cm−2, respectively. The binding capacity of each metal decreased, under competitive binding conditions (with a range of metal ions present at 17.8 μN), to 1.3 and 0.17 μmol cm−2, respectively, indicating stronger selectivity for Cu2+. The metal ions were readily recovered (>94%) by eluting with 2 M nitric acid solution for 24 h. The binding capacities for Cu2+ and Cd2+ were also found to decrease with increasing ionic strength and at pH values <5. The copolymer was found to have an equilibrium swelling ratio (qw) of over 500 at a maxima of pH 5.4 and at low ionic strengths. Finally, the copolymer hydrogel was tested as a binding phase with the diffusive gradients in thin films technique. A linear mass vs. time relationship was observed for Cu2+ in synthetic Windermere water with a recovery of approximately 100%.  相似文献   

11.
In this study, the water-soluble polymers of N-maleoyl glycine (MG) with crotonic acid (CA) were copolymerized by free radical polymerization to obtain hydrophilic polymers, in order to study the effect of the functional groups in the copolymers on the metal ion retention capacity, electrochemical and thermal behavior, since that important requirements for their use in technological applications are: high solubility in water, chemical stability, a high affinity for one or more metal ions, and selectivity for the metal ion of interest. The metal complexation properties of poly(MG-co-CA) for the metal ions were investigated at pH 3, 5, and 7 in aqueous solution. The metal ion investigated were: Cu(II), Co(II), Cr(III), Ni(II), Cd(II), Zn(II), and Fe(III). The polymeric systems showed high metal ion retention for Zn (II) and Fe(III) at different pH. At different pHs, the MRC of the poly(MG-co-CA) for Fe(III) ions varied from 122.1 to 146.2 mg/g and from 120.5 to 133.5 mg/g, (samples 1 and 2 at pH 3 and 7, respectively). The MRC had the highest retention values for both copolymer systems at pH 7. The copolymers presented higher thermal decomposition temperature (TDT) in comparison with copolymer–metal complexes at pH 3 and 5. The cyclic voltammetry (CV) for poly(MG-co-CA) (20 mM) was compared with the CV of the [poly(MG-co-CA)–Fe(III)] copolymer complex. Moreover, [poly(MG-co-CA)–Fe(III)] showed a redox wave difference between +0.25 and +0.50 V possibly due to the presence of metal complexed with the polymer. The electrochemical characterization of the copolymer poly(MG-co-AC) shown the reduction of carboxylic acid groups of the N-maleoylglycine and crotonic acid moiety to hydroxyl group. The results support the assumption that the copolymer presents convenient electroactivity.  相似文献   

12.
BACKGROUND: The high‐technology industries have been the driving force in the development of new synthetic polymers that combine thermal stability with specific functional properties. In this study p‐chlorophenylmaleimide, p‐hydroxyphenylmaleimide and p‐nitrophenylmaleimide (R‐PhMI) with 2‐hydroxyethyl methacrylate (HEMA) were synthesized by free radical polymerization to obtain hydrophilic polymers, in order to study the effect of the p‐chloroaryl, p‐hydroxyaryl or p‐nitroaryl group on the copolymer composition, electrochemical behavior and thermal properties. RESULTS: The thermal behavior was correlated with the copolymer composition and functional groups, maleimide derivatives, on the copolymers. Thermal decomposition temperature (TDT) and glass transition temperature (Tg) were influenced by the functional groups of R‐PhMI moiety on the copolymer. The polymers showed an electrochemically irreversible reduction process under the conditions tested. CONCLUSION: Poly[(p‐chloromaleimide)‐co‐(2‐hydroxyethyl methacrylate)] copolymer shows a higher TDT than poly[(p‐hydroxymaleimide)‐co‐(2‐hydroxyethyl methacrylate)] or poly[(p‐nitromaleimide)‐co‐(2‐hydroxyethyl methacrylate)] (NPHE). Tg decreases in going from nitro to hydroxyl to chloro groups. The NPHE copolymer shows a lower stability, losing weight at 200 °C. The NPHE copolymer shows a well‐defined reduction wave which is similar to those of the other copolymers and it also shows an additional quasi‐reversible reduction wave corresponding to the nitrobenzene group. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Xufeng Ni 《Polymer》2010,51(12):2548-9886
A novel graft copolymer consisting of poly(n-octylallene-co-styrene) (PALST) as backbone and poly(?-caprolactone) (PCL) as side chains was synthesized with the combination of coordination copolymerization of n-octylallene and styrene and the ring-opening polymerization (ROP) of ?-caprolactone. Poly(n-octylallene-co-styrene) (PALST) backbone was prepared from the copolymerization of n-octylallene and styrene with high yield by using the coordination catalyst system composed of bis[N,N-(3,5-di-tert-butylsalicylidene)anilinato]titanium(IV) dichloride (Ti(Salen)2Cl2) and tri-isobutyl aluminum(Al(i-Bu)3). The molar ratio of each segment in the copolymer, and the molecular weight of the copolymer as well as the microstructure of the copolymer could be adjusted by varying the feeding ratio of both styrene and n-octylallene. The hydroxyl functionalized copolymer PALST-OH was prepared by the reaction of mercaptoethanol with the pendant double bond of PALST in the presence of radical initiator azobisisbutyronitrile (AIBN). The target graft copolymer [poly(n-octylallene-co-styrene)-g-polycaprolactone] (PALST-g-PCL) was synthesized through a grafting-from strategy via the ring-opening polymerization using PALST-OH as macroinitiator and Sn(Oct)2 as catalyst. Structures of resulting copolymer were characterized by means of gel permeation chromatography (GPC) with multi-angle laser light scattering (MALLS), 13C NMR, 1H NMR, DSC, polarized optical microscope (POM) and contact angle measurements.  相似文献   

14.
Hong Xu 《Polymer》2006,47(11):3922-3928
Although poly(l-lactic acid) (PLLA) can be greatly toughened by copolymerization, its lower melting temperature and lower ability of crystallization limit its widespread application as commodity. In order to improve the melting point and ability of crystallization of PLLA based multiblock copolymers, Poly (d-lactic acid) (PDLA) oligomer was used to complex with PLLA-bisphenol A epoxy resin multiblock copolymer (PLLA-co-bis A) to form a stereocomplex. Differential scanning calorimeter (DSC), X-ray diffraction (XRD) and polarized optical microscopy (POM) were used to characterize the thermal properties and crystallization behavior of the stereocomplexes. The results indicated that the stereocomplex of PLLA-co-bis A and PDLA was formed. The formed stereocomplexes with good thermal properties (high Tm) and good crystallization properties (high crystallization rate and more stable crystals) are convinced to have high potential as high performance biodegradable polymers.  相似文献   

15.
Poly(vinyl alcohol-co-vinyl levulinate) was synthesized by N,N-dicyclohexylcarbodiimide assisted esterification of poly(vinyl alcohol) with free levulinic acid using 4-pyrrolidino pyridine as a catalyst in N,N-dimethyl acetamide/lithium chloride solvent system in order to optimize the reaction condition. The vinyl levulinate content in the copolymer was attained up to 0.95. The 13C NMR dyad compositional analysis indicated the block character of the copolymer was 0.92, suggesting almost random poly(vinyl alcohol-co-vinyl levulinate) was formed. Glass transition temperature dependence on vinyl levulinate content of the copolymers fitted better into Gordon-Taylor equation as compared with Fox equation and the glass transition temperature of poly(vinyl levulinate) was given as 2.3 °C by the least regression method.  相似文献   

16.
A monomer, 2-(isobutyramido)-3-methylbutyl methacrylate (IMMA) was synthesized through a two-step reaction. When a few of IMMA (less than 4 mol%) was copolymerized with N-vinylimidazole (VIm) under free radical polymerization condition, water-soluble P(VIm-co-IMMA) copolymers were obtained. Their structural information was verified and interpreted from 1H NMR, FTIR and GPC. Kinetic analyses from 1H NMR demonstrated that one-batch addition of IMMA into the polymerization system led to an inhomogeneous distribution of IMMA units in the copolymers, whereas homogeneous distribution of IMMA units in the copolymers could be obtained through the portion-wise addition of IMMA monomer. The thermal properties of such copolymers were measured by DSC. Compared with PVIm homopolymer, the few IMMA units in the P(VIm-co-IMMA) copolymer had little influence on the Tg values. The obtained P(VIm-co-IMMA) copolymers were thermoresponsive in water, and their phase transition temperatures could be efficiently raised through reducing the IMMA content in the copolymers, raising the addition times of IMMA monomers or lowering the pH of media. Dynamic light scattering analysis showed that unlike the traditional thermoresponsive linear polymers, obvious size shrinkage around the phase transition temperature could not be observed in such P(VIm-co-IMMA) copolymers. Such copolymers could be used as smart organocatalysts in the hydrolysis of p-nitrophenyl acetate. Below the phase transition temperature the reaction rate followed the Arrhenius law, but above the phase transition temperature the reaction rate increased much slower than the prediction from the Arrhenius law. Moreover, the catalytic transition temperature could be tuned through utilizing the P(VIm-co-IMMA) copolymers with different phase transition temperature. The mechanism was discussed accordingly.  相似文献   

17.
A series of novel electrolytes based on the terpolymer host, poly(epichlorohydrin-co-ethylene oxide-co-allyl glycidyl ether) with lithium perchlorate and lithium bis(trifluoromethanesulfonyl)imide have been prepared and characterized by conductivity measurements, cyclic voltammetry at a gold microelectrode and thermal analysis.Electrolyte compositions, represented as p(EEO-AGE)LiX(wt%), were produced with lithium salt compositions between 0.5 and 53 wt% (where wt% indicates amount of lithium salt present in the epichlorohydrin-co-ethylene oxide-co-allyl glycidyl host matrix). The guest salt and host polymer were dissolved in tetrahydrofuran and cast to produce thin, free-standing electrolyte films.The p(EEO-AGE)LiX(wt%) (X = ClO4 and TFSI) electrolytes showed encouraging levels of ionic conductivity and acceptable thermal stability. Electrolytes based on this host polymer were obtained as completely amorphous films with good mechanical properties.  相似文献   

18.
Blending of styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymers with syndiotactic polystyrene (PSsyn) has been performed in a Brabender mixer above the higher glass transition temperature of the triblock copolymer but below the PSsyn melting point. The large excess of the triblock copolymer over the homopolymer as well as the significant amount of plasticized amorphous PSsyn phase allowed the easy processing under the used temperature conditions with good interface compatibility. The consequent interfacial adhesion between the amorphous PS phase and the unmelted PSsyn crystallites affects both the final morphology of the blend as well as its dynamic behavior. Indeed, such solid particles act as reinforcing point of the overall blend structure, as evidenced by scanning electron microscopy. Moreover, they contribute to a Tg increase in the order of 20 °C with respect to pure SEBS and to an appreciable conservation of mechanical properties at temperatures higher than the Tg of the PS blocks of SEBS. The mechanical and thermal behavior of the synthesized blends has been studied and tentatively correlated to the molecular weight ratio between PSsyn and the PS blocks of SEBS.  相似文献   

19.
Novel amphiphilic ethyl cellulose (EC) brush polymers with mono and dual side chains of poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate) (P(MEO2MA-co-OEGMA)) and poly(2-(N,N-dimethylamino)ethyl methacrylate) (PDMAEMA) were synthesized by the combination of atom transfer radical polymerization (ATRP) and click chemistry. The molar ratio of P(MEO2MA-co-OEGMA) and PDMAEMA was varied through changing the feed ratio of these polymers and the coupling efficiency of click chemistry is relatively high. The brush polymers can self-assemble into spherical micelles/aggregates. The micelles/aggregates show the tunable temperature-pH responsive properties. The cloud points and the pH-triggered phase transition were influenced by EC chains and the ratio of P(MEO2MA-co-OEGMA) and PDMAEMA side chains. The brush polymers have the great potential applications as biomedical or intelligent materials.  相似文献   

20.
Poly(ε-caprolactone-co-ethylene carbonate-co-ethylene oxide) (CL-co-EC-co-EO) copolymer was synthesized via ring-opening copolymerization of ε-caprolactone (CL) and 1,3-dioxolan-2-one with a metal-free phosphazene catalyst (t-BuP4). The monomer conversion and molecular weight in CL-co-EC-co-EO copolymer were characterized by nuclear magnetic resonance and gel permeation chromatography, respectively. Moreover crystallization behavior of CL-co-EC-co-EO copolymer was investigated by differential scanning calorimeter and wide-angle X-ray diffraction. The enzymatic degradation of the copolymer has been investigated by quartz crystal microbalance with dissipation. Our studies demonstrate that as PCL content in the copolymer decreases, the degree of crystallinity and crystal size decrease, while the enzymatic degradation rate increases. The copolymer exhibits layer-by-layer degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号