首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To functionalize polyurethane, a novel synthetic reaction of diol compounds derived from methacrylates with various functional groups was investigated. The methacrylates were reacted with α-thioglycerol via a Michael-type addition to obtain the corresponding diol compounds under mild conditions. In this reaction, diisopropylamine was a much better catalyst than triethylamine. The conversion was dependent on the functional group in the methacrylate. The fluoroalkyl group in 2,2,2-trifluoroethyl methacrylate was better than the alkyl group in butyl methacrylate. No reaction was observed in the case of styrene. Using these diol compounds, polyurethanes were prepared by polyaddition with 4,4-diphenylmethane diisocyanate. When the polyurethanes were casted on the substrate, the functional groups influenced surface hydrophilicity and protein adsorption resistance property of the polyurethane significantly. In particular, phosphorylcholine group was the best to reduced protein adsorption. Based on these findings, the variety of these diol compounds synthesized from methacrylates has the potential for use in the production of novel polyurethanes.  相似文献   

3.
We discuss the chromatographic behavior of linear polymers and rings having specific (functional) adsorption-active groups. Functionalized eight-shaped, daisy-like and theta-shaped macromolecules are considered as well. By using a model of an ideal chain with point-type defects in a slit-like pore we derive equations for the distribution coefficient covering all modes of chromatography of functionalized polymers of any molar mass in both narrow and wide pores. Additionally simple approximate formulae are obtained for a number of important modes of chromatography; chromatograms are simulated for model mixtures of polydisperse non-functional and functional polymers. By using the theory we analyze separation of polymers by molar mass, functionality and topology. Although there is a principal possibility to use adsorption chromatography or size-exclusion chromatography (SEC), we conclude that the liquid chromatography at the critical condition (LCCC) is especially efficient for separation of polydisperse polymers by both functionality and topology. The theory predicts that functionalized linear and cyclic polymers can be separated from each others by LCCC even better than non-functionalized ones. The LCCC behavior of some other types of polymers such as comb-like and semicyclic ones is discussed as well.  相似文献   

4.
Seung-Hwan Chang 《Polymer》2011,52(15):3437-3442
Moisture-induced package failures such as interfacial delamination and pop-corn cracking are common failure phenomena that occur during the solder reflow process in the semiconductor industry. Therefore, the hygroscopic properties of the package materials are crucial factors in the reliability of electronic packaging products. In this work, molecular dynamics (MD) simulation was performed to study the hygroscopic properties, including diffusivity and swelling strain, of epoxy materials with respect to temperature and moisture concentration. Hygroscopic material properties predicted by MD are discussed and compared with the experimental data.  相似文献   

5.
A novel nonequilibrium molecular dynamics (NEMD) method introduced in 1994 and its recent application to investigations of the transport properties of gases and dense fluids within strongly inhomogeneous pore structures are reviewed. In this technique molecular simulations are conducted under realistic nonequilibrium (experimental) conditions thus enabling direct insight into the underlying microscopic processes taking place during transport within pores. The case studies reviewed in this paper establish the versatility and scope of the NEMD technique and also demonstrate its significant advantages over prior molecular simulation procedures as a tool to assist in the design and tailoring of novel nanopore systems.  相似文献   

6.
Polymer Bulletin - Four laboratory types of low molecular weight polybutadiene (PBD) with different 1,2-vinyl isomer contents were selected for microstructure characterization by nuclear magnetic...  相似文献   

7.
The motional heterogeneity in the polymer mixtures of segmented polyether polyurethane (PU) with carboxylic groups and methacrylic copolymer (PM) with tertiary amine groups was studied by the electron spin resonance (ESR)—spin probe and spin label methods. Pure polymer components containing varying amounts of functional groups and their 1:1 mass ratio mixtures have been analysed. The results of motional heterogeneity and polymer interaction were complemented with the glass transition temperatures, structural and morphological characteristics. Spin probed PU/PM mixtures indicate that the probe motion and the phase separation deduced from the temperature-dependent ESR spectra are sensitive to a free volume determined by the polymer-polymer interactions. The interaction between the two components in PU/PM mixture with the highest functional groups concentration disorganizes hard segment domains with spherulitic character at the microscopic level as compared with the ordered hard phase in the corresponding pure PU sample. The influence of PU hard and soft segments on the motional dynamics of PM chains is analysed from the ESR spectra of spin labelled PM chains in the mixtures with unlabelled PU components. The fractional amount of the PM fast motion depends on the temperature and concentration of functional groups.  相似文献   

8.
For application of epoxy adhesive to joining similar or dissimilar materials in vehicle bodies, its hygrothermal degradation (HTD) caused by severe environmental conditions of service will always be an issue until the relevant mechanism is clearly addressed and the remedy is found. This study provides experimental observations of an epoxy adhesive in terms of HTD and recoverability of the mechanical performance, and in the meantime, molecular dynamics (MD) simulations are performed to analyse the underlying mechanism. Comparing experimental results of the adhesive among states of the initial, HTD and dried manifests that the glass transition temperature (Tg) and the uniaxial tensile properties both reduced after HTD but partially recovered when dried. In the MD simulations, both of the dominant HTD factors, plasticization and hydrolysis, are accounted for via characterizations of water inclusion and bond scission. The simulation results reveal that both of the HTD factors reduce Tg, while only hydrolysis weakens the tensile properties. A quantitative comparison between the influences of plasticization and hydrolysis implies that hydrolysis is reversible for this specific epoxy adhesive.  相似文献   

9.
In various practical applications, such as high power actuators, high sensitivity sensors, and energy harvesting devices, polycrystalline piezoelectric films of 1–100?µm thickness and sizes ranging from several µm2 to several cm2 are required. With conventional film deposition processes, such as sol-gel, sputtering, chemical vapor deposition, or pulsed laser deposition, it is difficult to fabricate films with higher thickness due to their low deposition rate and high interfacial stress. The aerosol deposition method (AD), a relatively new deposition technique, can be used to fabricate highly dense thick films at room temperature by the consolidation of submicrometer-sized ceramic particles on various ceramic, metal, glass, and polymer substrates. Ferroelectric BaTiO3 ceramic films of different thicknesses ranging from 1 to 30?µm were fabricated on a low-cost metallic substrate at room temperature using the AD method. Surface morphology and adhesion of the film were analyzed. Analysis of internal residual stresses revealed an equibiaxial compressive stress state in the as-processed film. Electrical characterization of films annealed at 500?°C shows an enhanced polarization value of ~?14?µC/cm2 over that of the as-processed film. This improved property is related to the decreasing internal residual stress. In addition, the BT films prepared in this work were found to withstand electric fields greater than 100?kV/mm, which is possibly related to the inherent relatively defect-free structure of AD films.  相似文献   

10.
An analysis of a 400 ps molecular dynamics simulation of the164 amino acid enzyme T4 lysozyme is presented. The simulationwas carried out with all hydrogen atoms modeled explicitly,the inclusion of all 152 crystallographic waters and at a temperatureof 300 K. Temporal analysis of the trajectory versus energy,hydrogen bond stability, r.m.s. deviation from the startingcrystal structure and radius of gyration, demonstrates thatthe simulation was both stable and representative of the averageexperimental structure. Average structural properties were calculatedfrom the enzyme trajectory and compared with the crystal structure.The mean value of the C displacements of the average simulatedstructure from the X-ray structure was 1.1 ± 0.1 Å;differences of the backbone and angles between the averagesimulated structure and the crystal structure were also examined.Thermal-B factors were calculated from the simulation for heavyand backbone atoms and both were in good agreement with experimentalvalues. Relationships between protein secondary structure elementsand internal motions were studied by examining the positionalfluctuations of individual helix, sheet and turn structures.The structural integrity in the secondary structure units waspreserved throughout the simulation; however, the A helix didshow some unusually high atomic fluctuations. The largest backboneatom r.m.s. fluctuations were found in non-secondary structureregions; similar results were observed for r.m.s. fluctuationsof non-secondary structure and angles. In general, the calculatedvalues of r.m.s. fluctuations were quite small for the secondarystructure elements. In contrast, surface loops and turns exhibitedmuch larger values, being able to sample larger regions of conformationalspace. The C difference distance matrix and super-positioninganalyses comparing the X-ray structure with the average dynamicsstructure suggest that a ‘hinge-bending’ motionoccurs between the N- and C-terminal domains.  相似文献   

11.
The mechanical behavior of seven different carbon nanotube (CNT) X-junctions with a varying number of bonds was investigated through molecular dynamics simulations. The X-junctions are composed of two (6,0) single-walled carbon nanotubes (SWNTs) created via vibration-assisted heat welding. The junctions, containing anywhere between one and seven bonds, are subject to uniaxial tensile, shear and torsional strain, and then the stiffness values are determined for each case. When subjected to tensile and shear strain, both the arrangement and orientation of bonds are found to affect the stiffness of junctions more substantially than the number of bonds, bond length or bond order. Surprisingly, anisotropic shear behavior is observed in the X-junctions, which can be attributed to the junction's bond orientation. Also, the stiffness of X-junctions tested under an applied torque (torsion) differs from the stiffness under tensile and shear strain, however, in that it is more substantially affected by the number of bonds present in the junction than by any other property.  相似文献   

12.
S.R. Dhakate  O.P. Bahl 《Carbon》2003,41(6):1193-1203
The present investigation describes the quantitative measurement of surface functional groups present on commercially available different PAN based carbon fibers, their effect on the development of interface with resol-type phenol formaldehyde resin matrix and its effect on the physico-mechanical properties of carbon-carbon composites at various stages of heat treatment. An ESCA study of the carbon fibers has revealed that high strength (ST-3) carbon fibers possess almost 10% reactive functional groups as compared to 5.5 and 4.5% in case of intermediate modulus (IM-500) and high modulus (HM-45) carbon fibers, respectively. As a result, ST-3 carbon fibers are in a position to make strong interactions with phenolic resin matrix and HM-45 carbon fibers make weak interactions, while IM-500 carbon fibers make intermediate interactions. This observation is also confirmed from the pyrolysis data (volume shrinkage) of the composites. Bulk density and kerosene density more or less increase in all the composites with heat treatment up to 2600 °C. It is further observed that bulk density is minimum and kerosene density is maximum upon heat treatment at 2600 °C in case of ST-3 based composites compared to HM-45 and IM-500 composites. It has been found for the first time that the deflection temperature (temperature at which the properties of the material start to decrease or increase) of flexural strength as well as interlaminar shear strength is different for the three composites (A, B and C) and is determined by the severity of interactions established at the polymer stage. Above this temperature, flexural strength and interlaminar shear strength increase in all the composites up to 2600 °C. The maximum value of flexural strength at 2600 °C is obtained for HM-45 composites and that of ILSS for ST-3 composites.  相似文献   

13.
Lei Wang  An Li 《Polymer》2010,51(9):2084-2090
Solution polymerized styrene-butadiene rubber (SSBR) and SSBR with tert-Butylchlorodiphenylsilane (TBCSi, large-volume functional groups) at the two ends of macromolecular chains (T-SSBR) were prepared by anionic polymerization. The molecular structure parameters of T-SSBR and SSBR were characterized and the ratio of the amount of macromolecular chain ends connected with TBCSi to total macromolecular chain ends (i.e., end-capping efficiency) was calculated. The comprehensive properties of T-SSBR and SSBR composites filled with carbon black (CB) were investigated. The results showed that T-SSBR composites presented lower Payne effect (namely better CB dispersion) than those of SSBR composites, which led to decrease in hardness, internal friction, dynamic compression heat built-up and permanent set of T-SSBR composites, significant increase in tensile strength, elongation at break, tear strength and resilience of T-SSBR composites, and excellent balance between wet-skid resistance and rolling resistance. However, compared with SSBR composites, T-SSBR composites presented longer stress-relaxation time, bigger die-swell and higher apparent viscosity, as well as slightly inferior dynamic-cutting resistance. All the above, owing to the end-capping of TBCSi, which could immobilize the free chain ends of T-SSBR (i.e., to reduce the friction loss of molecular chains and create a greater degree of orientation in the force field), and adsorb CB, the comprehensive performances of T-SSBR were better than those of SSBR and T-SSBR terminated with styrene-TBCSi (TS-SSBR) were far superior to those of T-SSBR terminated with butadiene-TBCSi (TB-SSBR). Accordingly, the former was suitable for the tread of green tires.  相似文献   

14.
Three-dimensional molecular dynamics simulations are conducted to study the nanometric cutting of germanium. The phenomena of extrusion, ploughing, and stagnation region are observed from the material flow. The uncut thickness which is defined as the depth from bottom of the tool to the stagnation region is in proportion to the undeformed chip thickness on the scale of our simulation and is almost independent of the machined crystal plane. The cutting resistance on (111) face is greater than that on (010) face due to anisotropy of germanium. During nanometric cutting, both phase transformation from diamond cubic structure to β-Sn phase and direct amorphization of germanium occur. The machined surface presents amorphous structure.  相似文献   

15.
Three models (star-shaped, H-shaped, and comb-shaped polyethylenes) are used to study the crystallization behavior of low-density polyethylene at the molecular level by means of molecular dynamics simulation. It is shown that, for the three types of polyethylene corresponding to the models, the neighboring sequences of trans bonds firstly aggregate together to form local ordered domains, and then they coalesce to a lamellar structure. In the process, the branching sites are rejected to the fold surface gradually. The driving force for the relaxation process is the attractive van der Waals interaction between the chain segments. Furthermore, it is found that the number of the branch sites and the length of the branch play an important role in determining the formation of the lamellar structure. The longer the length of the branch and the fewer the number of the branch sites, the more perfect lamellar structure can be formed.  相似文献   

16.
Polyacrylamide was photografted on solution‐cast poly(3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid) (PHBV) films (amide‐PHBV), on which amide groups were transformed into amine groups through Hofmann degradation reaction (amine‐PHBV), followed by collagen coupling reaction to prepare collagen‐modified PHBV (collagen‐PHBV). Amide‐, amine‐, and collagen‐PHBV had higher water absorption and d‐spacing values than PHBV, and melting temperatures and enthalpies decreased in the order of collagen‐PHBV < amine‐PHBV < amide‐PHBV < PHBV. Thermal decomposition kinetics of PHBV component in the films has been investigated by means of nonisothermal thermogravimetric and derivative thermogravimetric studies. Applying the Avrami‐Erofeev equation with index of 2/5 as the probable kinetic function, the suitable activation energy was calculated by the Friedman method through linear fitting (correlation coefficient > 0.98). The activation energy of PHBV was lower than that of amide‐PHBV but higher than that of amine‐ and collagen‐PHBV. Being incubated in phosphate‐buffered saline at 37°C, the modified PHBV films showed more weight loss than PHBV during 360 days; however, pH of degradation fluids was nearly neutral as the initial pH was recorded at 7.2. The modified PHBV films with different functional groups may provide an improved biodegradation rate for various cytocompatible biomaterials constructs. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
分子动力学模拟预测壳聚糖的玻璃化转变温度   总被引:4,自引:1,他引:4       下载免费PDF全文
为了预测壳聚糖的玻璃化转变温度,在COMPASS力场和恒温恒压(NPT)系综条件下,利用分子动力学模拟方法,在343~543 K温度范围内研究了壳聚糖的玻璃化转变行为,通过模拟体系在不同温度下的比体积、回转半径和能量参数,获得了壳聚糖的玻璃化转变温度(Tg)。研究结果表明,壳聚糖的比体积、回转半径、内能随温度有规律的变化并在Tg处发生转折。模拟计算得到的壳聚糖的Tg与实验方法获得的值基本相符,分子动力学方法可用于壳聚糖玻璃化转变温度的预测。其中,通过回转半径-温度曲线获得的Tg与实验值最相符,回转半径是影响玻璃化转变的一个重要因素,可用于预测聚合物的玻璃化转变温度。  相似文献   

18.
Thermochemical conversion of lignocellulosic biomass to renewable fuels and chemicals occurs through high temperature decomposition of the main structural components in plants, including cellulose, hemicellulose, and lignin. Cellulose and hemicellulose comprise mostly carbohydrates. Two disaccharides, maltose and cellobiose, are used as model compounds to explore differences in thermal stability due to the orientation of the glycosidic bond. First principles molecular dynamics and density functional theory have been used to probe the decomposition of these disaccharides during pyrolysis at 700 K. The results suggest that maltose, the α‐disaccharide, is less thermally stable. Dynamic bond length analysis for maltose indicates that several C?C bonds and the C?O bonds on the pyranose ring demonstrate signs of weakening, whereas no such scissile bonds were identified for cellobiose. The higher stability of the cellobiose is believed to originate from the persistence of low‐energy hydroxymethyl conformers throughout the simulation which enable strong inter‐ring hydrogen bonding. Thermogravimetric and mass spectroscopic experiments corroborate the enhanced thermal stability of cellobiose, wherein the onset of decomposition was observed at higher temperatures for cellobiose than for maltose. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2562–2570, 2015  相似文献   

19.
The composition-structure-properties relationship of the lithium-calcium borosilicate (LCBS) glasses, which have a composition of 0.4[(1-x)Li2O-xCaO]-0.6[(1-y)B2O3-ySiO2] with x in the range of 0–1 and y in the range of 0.33–0.83, is investigated by the molecular dynamics (MD) simulation with the Buckingham potential. The structure of the silicon-oxygen tetrahedron is relatively independent of the glass compositions; however, the structure of the boron-oxygen polyhedron and the local environment around the modifier cations change significantly with increasing [SiO2]/[B2O3] ratio (K) and CaO content. The relationships between glass composition and simulated linear thermal expansion coefficient (αL), glass transition temperature (Tg), self-diffusivity (D), activation energy of electrical conductivity (Eaσ) and fragility (m) are strongly affected by the change of glass network structure, and consistent with those of experimental results.  相似文献   

20.
Moisture-related failure is one of the main concerns in the integrated circuit (IC) package design. To minimize such failure in multi-layered electronic assemblies and packages, it is important to develop a better understanding of the reliability at a molecular level. In this paper, molecular dynamics (MD) simulations were conducted to investigate the respective moisture diffusion into the epoxy molding compound (EMC) and at the EMC/Cu interface. Moisture diffusion coefficients into the bulk EMC material and at the EMC/Cu interface can be derived from the mean-squared displacements calculated from MD simulations. The MD results showed that the seepage along the EMC/Cu interface is more prevalent when compared to moisture diffusion into the bulk EMC and, thus, rendering it a dominant mechanism causing moisture induced interfacial delamination in plastic packages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号