首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Poly(2-hydroxyethyl methacrylate) (PHEMA) brushes were grown from flat silicon wafers with surface-tethered α-bromoester initiator via atom transfer radical polymerization (ATRP) in aqueous media at ambient temperature first. Kinetics studies revealed an approximate linear increase in thickness with reaction time, indicating that the polymerization process owned some “living” character. Then a kind of polymer-metal complexes (PMCs) were obtained after the introduction of Cu2+ cations into the PHEMA brushes by the complexing bond between Cu2+ cations and the hydroxyl groups in PHEMA brushes. Finally, the Cu2+ cations in PMCs were reduced by NaBH4 and a kind of PHEMA brushes containing metal nanoparticles of Cu0 was formed.  相似文献   

2.
Combined TiO2/SiO2 mesoporous materials were prepared by deposition of TiO2 nanoparticles synthesised via the acid-catalysed sol–gel method. In the first synthesis step a titania solution is prepared, by dissolving titaniumtetraisopropoxide in nitric acid. The influences of the initial titaniumtetraisopropoxide concentration and the temperature of dissolving on the final structural properties were investigated. In the second step of the synthesis, the titania nanoparticles were deposited on a silica support. Here, the influence of the temperature during deposition was studied. The depositions were carried out on two different mesoporous silica supports, SBA-15 and MCF, leading to substantial differences in the catalytic and structural properties. The samples were analysed with N2-sorption, X-ray diffraction (XRD), electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) to obtain structural information, determining the amount of titania, the crystal phase and the location of the titania particles on the mesoporous material (inside or outside the mesoporous channels). The structural differences of the support strongly determine the location of the nanoparticles and the subsequent photocatalytic activity towards the degradation of rhodamine 6G in aqueous solution under UV irradiation.  相似文献   

3.
Nanocrystalline TiO2, CeO2 and CeO2-doped TiO2 have been successfully prepared by one-step flame spray pyrolysis (FSP). Resulting powders were characterized with X-ray diffraction (XRD), N2-physisorption, Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometry. The TiO2 and CeO2-doped TiO2 nanopowders were composed of single-crystalline spherical particles with as-prepared primary particle size of 10-13 nm for Ce doping concentrations of 5-50 at%, while square-shape particles with average size around 9 nm were only observed from flame-made CeO2. The adsorption edge of resulting powder was shifted from 388 to 467 nm as the Ce content increased from 0 to 30 at% and there was an optimal Ce content in association with the maximum absorbance. This effect is due to the insertion of Ce3+/4+ in the TiO2 matrix, which generated an n-type impurity band.  相似文献   

4.
5.
The monodisperse CoFe2O4 nanoparticles were synthesized by a modified chemical coprecipitation method. Coating SiO2 on the surface of the CoFe2O4 nanoparticles was carried out to keep single domain particles non-interacting with cubic magnetocrystalline anisotropy. The Curie temperatures (Tc) of the monodisperse CoFe2O4 nanoparticles can be accurately measured because the SiO2 shells prevented the aggregation and growth of nanoparticles at high temperature. The magnetic properties of the CoFe2O4@SiO2 nanoparticles with core-shell structure in a wide temperature range (300~950?K) were investigated. It is remarkable that the coercive field (Hc) of CoFe2O4 nanoparticles increased from about 760?Oe to 1806?Oe after being coated with SiO2, which increased by 137.6% compared to the uncoated samples at 300?K. The saturation magnetization (Ms) of the CoFe2O4@SiO2 nanoparticles is 34.59?emu/g, which is about 52% of the naked CoFe2O4 nanoparticles value (66.51?emu/g) at 300?K. The hysteresis loops of the CoFe2O4@SiO2 nanoparticles showed an orderly magnetic behavior at high temperature, such as the Ms, remanence magnetization (Mr) and Hc decreased as temperature increasing, being equal to zero near Tc. This is a good indication that the CoFe2O4@SiO2 nanoparticles are suitable for a wide variety of technological applications at high temperature.  相似文献   

6.
The weathering performance of Norway spruce coated with acrylic water based paint mixed with TiO2 and clay nanoparticles were investigated. Uncoated specimens and specimens coated with unmodified paint were used as references. This work describes the effect of the nanoparticles in general and compares the performance of 1 wt% and 3 wt% of nanoparticles in particular on the weathering performance of the coated specimens. Accelerated ageing experiments were performed in an Atlas solar simulator to evaluate the ageing behaviour of the coated wood and characterized through colour measurements and Fourier transform infrared (FTIR) spectroscopy before, during and at the end of the exposure periods. In general, the addition of TiO2 and clay nanoparticles slightly slowed down the coated specimens degradation compared to specimens coated with unmodified paint.  相似文献   

7.
Consolidation-sedimentation behaviors of consolidated sediment under action of gravity were investigated using highly concentrated suspension of titanium dioxide particles under conditions of various pHs, initial heights, and initial concentrations. The average consolidation ratio of the consolidated sediment was analyzed on the basis of the simplified analytical solution obtained using the modified Terzaghi's model under the moving Lagrangian coordinate system. Although the solution pH strongly affects consolidation-sedimentation behaviors, the modified average consolidation coefficient was little influenced by the solution pH. Also, the consolidation coefficient increased in almost direct proportion to the total volume of solids per unit cross-sectional area, which changes the driving force of consolidation-sedimentation due to the overlying weight of the solid particles. The variations with time of the height of the consolidated sediment were adequately described using the analytical solution describing the average consolidation ratio with the aid of the relation that the equilibrium height was represented by a power function of the total volume of solids for a specified pH.  相似文献   

8.
This work examines the effect of wood specimens coated with water based acrylic coatings modified with TiO2 and clay nanoparticles against weathering strain. The long-term durability of the specimens towards climate strain was studied within a relatively short time frame by accelerated climate ageing. The surface changes that occurred as a result of photodegradation of the specimens subjected to accelerated climate exposures were studied using colour measurements and Fourier transform infrared (FTIR) spectroscopy. The results revealed a significant decrease in the intensity of lignin bands attributed to degradation of the lignin component of the wood. However, the intensity of the lignin photodegradation was lower for coated specimens, with slightly lower degradation for the specimens coated with paints modified with TiO2 and unmodified montmorillonite clay nanoparticles.  相似文献   

9.
CaTiO3 and CaTiO3/TiO2 nanocompounds have been synthesized through a colloidal sol-gel route using Ca2+/TiO2 nanoparticulate sols. The peptization time was determined so that as higher is the Ca2+ concentration, shorter is the peptization time. The obtained cryogels from the respective sols were calcined at different temperatures (300–900 °C) and the structural and morphological changes were characterized mainly by X-ray diffraction and transmission electron microscopy. In all cases, the formation of the CaTiO3 phase was observed after calcination at temperatures as low as 500 °C. Mesoporous cryogels with nanoparticles with sizes below 50 nm were obtained and their photocatalytic activity changes as a function of the calcination temperature and the applied wavelength were determined. Quantum yield values revealed that either CaTiO3 or the CaTiO3/TiO2 (0.4 M ratio) compound can be chosen as the most efficient photocatalyst at higher calcination temperatures and longer wavelengths, while TiO2 is more effective at low calcination temperatures and shorter wavelengths.  相似文献   

10.
TiO2 nano-wires (Ti-NWs) and nano-flakes (Ti-NFs) were obtained from phosphorus doped TiO2 nanoparticles (Ti-P) by hydrothermal method and by subsequent heat treatment respectively. FE-SEM micrograph of the as prepared sample depicts well formed, entangled and randomly oriented nano-wires morphology, which changes to nano-flakes morphology after heat treatment. Structural characterization of the samples by X-ray diffraction shows anatase phase for both the samples. Absorption edge of the Ti-NWs sample shows blueshift where as the Ti-NFs sample exhibit redshift compared to precursor sample as evidenced by UV–Visible absorption spectra, which is due to change in morphology and crystallinity of the samples. XPS studies indicate the presence of titanium and oxygen species only. From the EPR measurements with in-situ visible light irradiation, the number of photogenerated charge carriers is found to be very high for nano-flakes sample. Methyleneblue degradation profiles depict very high activity of Ti-NFs sample compared to Ti-NWs and the precursor samples, which is due to the observed redshift in the absorption edge, change in morphology and high crystallinity of the sample which in turn increases the optical response and separation of photogenerated charge carriers as evidenced by the optical and EPR measurements respectively.  相似文献   

11.
The application of heterogeneous photocatalysis is described as an advanced oxidation process (AOP) for the degradation of the diazo reactive dye using immobilized TiO2 as a photocatalyst. Starting TiO2 solutions were prepared with and without the addition of polyethylene glycol (PEG) and TiO2 films were directly deposited on a borosilicate glass substrate using the sol-gel dip-coating method. The surface morphology and the nanoscale roughness of TiO2 films were studied by means of atomic force microscopy (AFM). Structural properties of TiO2 were identified by X-ray diffraction (XRD). The decomposition behaviour of organic compounds from the gels was investigated using thermal gravimetry (TG) and differential scanning calorimetry (DSC). Photocatalytic activities of TiO2 films in the process of degradation of the commercial diazo textile dye Congo red (CR), used as a model pollutant, were monitored by means of UV/vis spectrophotometry. The kinetics of the degradation of the CR dye was described with the Langmuir-Hinshelwood (L-H) kinetic model.The addition of PEG to the TiO2 solution resulted in the changes in the film surface morphology, and affected the ratio of anatase-rutile crystal phases and the photocatalytic activity of TiO2. The TiO2 film prepared with PEG is characterized by higher roughness parameters (Ra, Rmax, Rq, Rz and Zmax), a lower amount of the rutile phase of TiO2, a higher amount of the anatase phase of TiO2 and a better photocatalytic activity compared to the TiO2 film without the addition of PEG.  相似文献   

12.
Nanoscale TiO2 particle filled poly(vinylidenefluoride-co-hexafluoropropylene) film is characterized by investigating some properties such as surface morphology, thermal and crystalline properties, swelling behavior after absorbing electrolyte solution, chemical and electrochemical stabilities, ionic conductivity, and compatibility with lithium electrode. Decent self-supporting polymer electrolyte film can be obtained at the range of <50 wt% TiO2. Different optimal TiO2 contents showing maximum liquid uptake may exist by adopting other electrolyte solution. Room temperature ionic conductivity of the polymer electrolyte placed surely on the region of >10−3 S/cm, and thus the film is very applicable to rechargeable lithium batteries. An emphasis is also be paid on that much lower interfacial resistance between the polymer electrolyte and lithium metal electrode can be obtained by the solid-solvent role of nanoscale TiO2 filler.  相似文献   

13.
Well-defined poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) brushes with high density were synthesized on the surface of polystyrene latex by atom transfer radical polymerization (ATRP) using acetone/water as the solvent and CuCl/CuCl2/bpy as the catalyst. It was found that the polydispersity of PDMAEMA brushes decreased with the increasing external CuCl2 concentration. The polymer brushes showed their lower critical solution temperature (LCST) at 31 and 33 °C under pH values of 10.0 and 8.0, respectively. Dynamic light scattering studies demonstrate that PDMAEMA brushes were pH- and salt-responsive. PDMAEMA domains were used as the nanoreactors to generate gold nanoparticles on the surface of colloid particles. TEM results indicate that monodispersed gold nanoparticles were obtained. These gold composite nanoparticles displayed effective catalytic activity in the reduction of 4-nitrophenol by NaBH4.  相似文献   

14.
CeO2/TiO2 composite with kernel–shell structure was synthesized by a sol–gel process. The characterization results show that the composite is made up of anatase phase TiO2 and cubic system CeO2. The electrochemiluminescence (ECL) behavior of the CeO2/TiO2 composite was studied by a cyclic voltammetry in the presence of persulfate, and the effect factors on ECL emission were discussed. Based on a series of experiments, it is proposed that the strong dual ECL emission produced by the CeO2/TiO2 composite resulted from the benefit ECL effect of interface heterojunction in composite.  相似文献   

15.
通过“Stober”法制备出单分散球形SiO2粒子,并采用3-缩水甘油醚氧基丙基三甲氧基硅烷对其表面进行功能化修饰,然后,利用异丙醇铝作为多相催化剂,原位引发环氧丙烷(PO)单体开环聚合,制得了聚环氧丙烷(PPO)高分子刷接枝改性的SiO2(PPO-g-SiO2)。研究了单体添加量、反应温度及反应时间等因素对聚环氧丙烷高分子刷接枝量的影响规律。采用红外光谱(FT-IR)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)及热重分析(TGA)等分析方法对制备的PPO-g-SiO2的化学结构、微观形貌以及接枝量进行了表征。结果显示,当单体添加量为2.38 mol·L-1,反应温度为80℃,反应时间为24 h时,PPO在SiO2表面的接枝量可达23.56%(质量分数);其厚度约为15 nm。  相似文献   

16.
The iron oxide nanoparticles were loaded onto self-organized TiO2 nanotube layers grown by anodization of Ti in fluoride containing electrolytes. The nanoparticles were obtained by electrodepositing method in glycerol/water/FeCl3·6H2O electrolytes at room temperature. The X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) measurements showed that the nanoparticles consisted of iron nanocrystalline (Fe) and magnetite (Fe3O4). The hematite (α-Fe2O3) structure was obtained by annealing in air at 450 °C. The growth mechanism of the nanoparticles and their morphology were also described. Furthermore, the nanoparticles exhibited good ferromagnetic properties at room temperature.  相似文献   

17.
In this paper, the CuO/TiO2 catalysts prepared by the deposition–precipitation (DP) method were extensively investigated for CO oxidation reaction. The structural characters of the CuO/TiO2 catalysts were comparatively investigated by TG-DTA, XRD, and XPS measurements. It was shown that the catalytic behavior of CuO/TiO2 catalysts greatly depended on the TiO2-support calcination temperature, the CuO loading amount and the CuO/TiO2 catalysts calcination temperature. CuO supported on the anatase phase of TiO2-support calcined at 400 °C showed better catalytic activity than those supported on TiO2 calcined at 500 and 700 °C. Among all our investigated catalysts with CuO loading from 2% to 12%, the catalyst with 8 wt% CuO loading exhibited the highest catalytic activity. The optimum calcination temperature of the CuO/TiO2 catalysts was 300 °C. The XRD results indicated that the catalytic activity of the CuO/TiO2 catalysts was related to the crystal phase and particle size of TiO2 support and CuO active component.  相似文献   

18.
TiO2, TiO2/Ag and TiO2/Au photocatalysts exhibiting a hollow spherical morphology were prepared by spray pyrolysis of aqueous solutions of titanium citrate complex and titanium oxalate precursors in one-step. Effects of precursor concentration and spray pyrolysis temperature were investigated. By subsequent heat treatment, photocatalysts with phase compositions from 10 to 100% rutile and crystallite sizes from 12 to 120 nm were obtained. A correlation between precursor concentration and size of the hollow spherical agglomerates obtained during spray pyrolysis was established. The anatase to rutile transformation was enhanced with metal incorporations and increased precursor concentration. The photocatalytic activity was evaluated by oxidation of methylene blue under UV-irradiation. As-prepared TiO2 particles with large amounts of amorphous phase and organic residuals showed similar photocatalytic activity as the commercial Degussa P25. The metal incorporated samples showed comparable photocatalytic activity to the pure TiO2 photocatalysts.  相似文献   

19.
G. Myagmarsuren 《Polymer》2005,46(11):3685-3692
The homopolymerization of 5-alkyl-2-norbornenes and their copolymerization with norbornene have been successfully carried out employing Pd(acac)2/PPh3/BF3OEt2 catalyst system. The activity of the catalyst system is comparable to that of most active late-transition metal catalysts described in the literature. The molecular weight distributions of homo- and copolymers indicate a single-site, highly homogeneous character of the active catalyst species. The incorporation of flexible alkyl groups onto the main chain of norbornene as well as copolymerization of 5-alkyl-2-norbornenes with norbornene represent useful methods for lowering the glass transition temperature (Tg), i.e. improving the processability. The simplicity of catalytic system composition might be of industrial importance.  相似文献   

20.
Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions were studied for potential applications in water decontamination technology and their capacity to induce an oxidation process under VIS light. UV–vis spectroscopy analysis showed that the junctions-based Cu2O, Bi2O3 and ZnMn2O4 are able to absorb a large part of visible light (respectively, up to 650, 460 and 1000 nm). This fact was confirmed in the case of Cu2O/TiO2 and Bi2O3/TiO2 by photocatalytic experiments performed under visible light. A part of the charge recombination that can take place when both semiconductors are excited was observed when a photocatalytic experiment was performed under UV–vis illumination. Orange II, 4-hydroxybenzoic and benzamide were used as pollutants in the experiment. Photoactivity of the junctions was found to be strongly dependent on the substrate. The different phenomena that were observed in each case are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号