首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work, we investigated the thermal behaviour of a carbon‐fibre composite impregnated with nano‐alumina‐based nanocomposites. First of all, we demonstrated that it is possible to obtain good dispersion and distribution of nanoparticles by mechanical mixing. In all the studied filler percentages, the presence of the ceramic filler did not affect the processability of the blends and the mechanical properties of the composites. First, the thermal stability of the nanocomposites was investigated by thermogravimetric analysis (TGA). Then, the fire reaction of the fibre‐reinforced composites was studied at different heat fluxes, by TGA, cone calorimeter and exposure to a direct flame. In presence of an oxidizing hyperthermal environment, the experimental data suggested the role of ceramic particles as anti‐oxidizer agent for the char and the carbon fibres. Moreover, the use of alumina nanoparticles allowed a slight reduction of heat release rate. Particularly at a heat flux of 35 kW/m2, the burnt material containing the higher quantity of nano‐alumina maintained a residual structural integrity because of the higher presence of char that bound together the fibres. To estimate the integrity of the composites after exposure to a direct flame (heat flux 500 kW/m2), mechanical tests were carried out on the burnt specimens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Wheat straw (WS) has numerous advantages compared with traditional bioadditives such as starch and lignin. So in this work, based on WS and silica microencapsulated ammonium polyphosphate, flame retardant polypropylene/wheat straw (WSP) composites were prepared by melted blend method. Flame retardant and thermal properties of WSP composites have been investigated. The results of cone calorimeter show that peaks of heat release rate and total heat release of the flame retardant WSP composite decrease substantially compared with those of pure polypropylene. The peak of heat release rate value of the flame retardant WSP composite decreases from 1290.5 to 247.9 kW/m2, and the total heat release value decreases from 119.4 to 46.3 MJ/m2. Meanwhile, thermal degradation and gas products of the flame retardant WSP composite were monitored by thermogravimetric analysis and thermogravimetric analysis‐infrared spectrometry. The result of thermal analysis shows that the flame retardant WSP composite has a high thermal stability and has a 30.0 wt% residual char at 600°C. From this work, we hope to provide a method to prepare flame retardant polymer composites with a biodegradable natural material‐WS.  相似文献   

3.
This study is based on the use of integral, hybrid thermal barrier to protect the core of the composite structure. Thermal barrier treatments evaluated in this study include ceramic fabric, ceramic coating, intumescent coating, hybrid of ceramic and intumescent coating, silicone foam, and phenolic skin. The composite systems evaluated in combination with thermal barrier treatments included glass/vinyl ester, graphite/epoxy, graphite/bismaleimide, and graphite/phenolic. All configurations were tested for flammability characteristics. These included smoke density and combustion gas generation (ASTM E-662), residual flexural strength (ASTM D-790), heat release rate, and ignitability (ASTM E-1354). ASTM E-662 test method covers the determination of specific optical density of smoke generated by solid materials. ASTM D-790 test method covers the determination of flexural properties of composite materials in the form of rectangular bars. ASTM E-1354 (cone calorimeter) covers the measurement of the response of materials exposed to controlled levels of radiant heating with or without an external ignitor, and is used to determine the ignitability, heat release rates, mass loss rates, effective heat of combustion, and visible smoke development. Without any fire barrier treatments, all composite systems evaluated in this study failed to meet ignitability and peak heat release requirements of MIL-STD-2031 (SH) at radiant heat fluxes of 75 and 100 kW m?2, respectively. Intumescent coating and a hybrid system consisting of intumescent coating over ceramic coating were the most effective fire barrier treatments for composite systems evaluated in this study. Using either of these treatments, all composite systems met the ignitability requirements of 90 and 60 at 75 and 100 kW m?2, respectively. Except for glass/vinyl ester, all systems also met the peak and average heat release requirements of MIL-STD-2031 (SH) at radiant heat fluxes of 25, 75, and 100 kW m?2, respectively.  相似文献   

4.
In this work, a series of flexible polyimide composite foams with dianhydride and isocyanate as the starting materials were prepared by pre‐dispersing vermiculite in isocyanate. The experimental results revealed that the cellular diameter of foams obviously decreased with the addition of vermiculite. The open cell content decreased with the increase of vermiculite, and foams containing vermiculite possessed higher apparent densities of about 10 kg/m3 when compared with the neat polyimide foams. The compressive strength was dramatically enhanced by vermiculite incorporation, and reached maximum when the filler content was 2%, indicating dramatically reinforcing effect of vermiculite. With the addition of vermiculite, the thermal stability and flame resistance of polyimide foams were improved. The limiting oxygen index of polyimide foams showed an increase from 31 to 33.5% with increase of vermiculite from 0 to 8% and the peak heat release rate decreased, indicating high flame retardant properties. Vermiculites possess excellent heat insulation and high temperature stability. When conditioned at high temperature, the filler would block the heat transfer during the bulk foam. Therefore, it is feasible to further increase the mechanical and thermal properties of polyimide foams by vermiculite filling. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44828.  相似文献   

5.
The evolution of residual stresses found within a silicon carbide/silicon carbide (SiC/SiC) ceramic matrix composite through thermal treatments was investigated using Raman microspectroscopy. Constituent stress states were measured before, during, and after exposures ranging from 900 to 1300°C for varying times between 1 and 60 minutes. Silicon carbide particles in the as-received condition exhibited average hydrostatic tensile stresses of approximately 300 MPa when measured at room temperature before and after heat treatment. The room temperature Raman profile of the silicon matrix was altered in both shape and location with heat treatment cycles due to increasing activation of boron within the silicon lattice as heat treatment temperatures increased. By accounting for boron activation in the silicon–boron system, little to no permanent change of any constituent stresses were observed, and the silicon matrix subsequently exhibited a complimentary average hydrostatic compressive stress of approximately 300 MPa at room temperature, measured before and after heat treatment. This result builds upon previous literature and offers increased insight into boron activation phenomena measured through Raman spectroscopy methods.  相似文献   

6.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this work, the influences of 4ZnO·B2O3·H2O zinc borate (ZB) whisker based intumescent flame retardant (IFR) containing ammonium polyphosphate and dipentaerythritol on the mechanical, flame retardant and smoke suppression properties of polypropylene (PP) composites were characterized by the universal testing machine, UL-94, limiting oxygen index (LOI), and cone calorimeter tests, respectively. The results indicate that only 1 phr of ZB could effectively improve the LOI value and slow down the burning rate of PP composite. The peak heat release rate, average of HRR, total heat release, peak smoke production rate, and total smoke production values are all decreased from 413.8 kW/m2, 166.3 kW/m2, 82.3 MJ/m2, 0.0995 m2/s, and 17.9 m2 for PPc/20IFR composite to 267.8 kW/m2, 128.3 kW/m2, 66.8 MJ/m2, 0.0478 m2/s, and 12.6 m2 for PPc/20IFR/1ZB composite, respectively. The scanning electron microscopy images, energy dispersive spectrometry, and Raman spectra of char residue reveal that ZB is helpful to form a compact and graphitized intumescent char residue so that the heat diffusion and oxygen transmission are greatly hindered. The thermogravimetry analysis-fourier transform infrared spectroscopy (TGA-FTIR) results show that less combustible volatiles and more H2O vapor are generated with the appearance of ZB. Hence, the combustion mechanism in gas phase is suppressed.  相似文献   

8.
In this work, ceramic fillers zirconia and alumina powder were incorporated in the rigid polyurethane foams derived from modified castor oil and their impact on the mechanical, thermal, and fire performances of composite foams have been analyzed. It was observed that the addition of ceramic filler showed improved mechanical and thermal properties and best properties were shown by 6% zirconia with compressive strength of 6.61 MPa and flexural strength of 5.72 MPa. Zirconia also demonstrated an increase in T5% up to 260 °C. Cone calorimetry shows a decrease in peak of heat release from 118 to 84 kW m−2 and 94 kW m−2 by the incorporation of alumina and zirconia powder, respectively. Furthermore, total heat release (THR), smoke production rate (SPR), and total smoke release (TSR) were also found to decrease remarkably on the incorporation of ceramic fillers. So, these fillers have a great potential as an additive to incorporate good mechanical, thermal, and fire properties in bio-based rigid PU foams. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48250.  相似文献   

9.
Wollastonite, a natural calcium metasilicate possessing acicular crystal habit structure, was used together with intumescent flame retardant (IFR) to flame retard polypropylene (PP). The synergistic effects between wollastonite and IFR were investigated using limiting oxygen index (LOI) test, cone calorimeter test, thermogravimetric analysis, scanning electron microscope‐energy dispersive spectrometer (SEM‐EDS), etc. The results revealed that wollastonite could effectively improve mechanical properties and flame retardancy of the PP/IFR composite. When 2.0 wt% wollastonite substituted for the same amount of IFR in the composite, the impact strength was enhanced from 4.6 kJ/m2 to 6.8 kJ/m2, which was increased by 47.1%. Meanwhile, the LOI was increased from 33.0% to 35.5%, a UL‐94V‐0 rating was achieved and the peak heat release rate decreased substantially from 314.4 kW/m2 to 262.8 kW/m2. Furthermore, the SEM‐EDS results provided positive evidence that the quality of char layer of the PP/IFR/wollastonite was superior to that of the PP/IFR composite due to synergism between wollastonite and IFR. POLYM. COMPOS., 35:158–166, 2014. © 2013 Society of Plastics Engineers  相似文献   

10.
The fire structural response of sandwich composite laminates incorporating bio‐derived constituents subjected to a turbulent flaming fire was investigated. Fire structural tests were conducted on thermal insulated sandwich composites incorporating a thin surface‐bonded non‐woven glass fibre tissue impregnated with char‐forming fire retardant, ammonium polyphosphate. The sandwich composite laminates were loaded in compression at 10%, 15% or 20% of the ultimate compressive strength while simultaneously subjected to turbulent flames imposing an incident heat flux of 35 kW/m2. Generally, the failure time increased with the reduced applied compressive load. The thermal insulated sandwich composite laminates had considerably improved fire resistance in comparison to their unmodified counterparts. The unmodified composites failed 96 s earlier than the thermal insulated specimens when the compression load was 10% of the ultimate compressive strength. The presence of ammonium polyphosphate at the heat‐exposed surface promoted the formation of a consolidated char layer, which slowed down heat conduction into composite laminate substrate. The fire reaction parameters measured via the cone calorimeter provided insights into the thermal response hence fire structural survivability of sandwich composite laminates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Boron carbide (B4C)-based ceramics were pressureless sintered to a relative density of 96.1% at 2150 °C, with the co-incorporation of tungsten carbide and pyrolytic carbon. The as-batched boron carbide power was 7.89 m2 g?1 in surface area. A level of fracture toughness as high as 5.80 ± 0.12 MPa m1/2 was achieved in the BW-6C composite. Sintering aids of carbon and tungsten boride were formed by an in situ reaction. The toughness improvement was attributed to the presence of thermal residual stress as well as the W2B5 platelets. The thermal conductivity and thermal expansivity of the BW-6C composite as a function of temperature are also reported in this work. Our current study demonstrated that the B4C–W2B5 composites could be potential candidate materials for structural applications.  相似文献   

12.
Two kinds of carbon and phosphorus synergistic system used to improve the flame retardancy of rigid polyurethane foams (RPUF) were studied. One is the synergistic effect of expandable graphite and guanidinium phosphate; the other is red phosphorus and guanidinium phosphate. The flame retardant properties and mechanical properties of these composites were investigated by limiting oxygen index, cone calorimeter test, as well as tension and compression test. These 2 groups of mixed inorganic flame retardants can greatly improve the flame retardancy of RPUF composites, as the limiting oxygen index increases from 20.1% to about 33% and the HRR reduces from 395 kW/m2 to below 200 kW/m2. It provides a convenient and inexpensive way to obtain RPUF with demanding properties.  相似文献   

13.
采用机械力化学法对芦苇纤维(RF)进行磷酰化改性,并将改性后的磷酰化芦苇纤维(MPRF)与聚乳酸(PLA)共混制备复合材料,研究了MPRF对复合材料热稳定性、阻燃性、燃烧性能以及力学性能的影响。结果表明,磷元素成功接枝到芦苇纤维表面,800 ℃时的残余质量增加;随着MPRF添加量的提高,PLA复合材料的阻燃性能随着MPRF的加入而逐渐增加,当MPRF添加量为40 %(质量分数,下同)时,其弯曲强度和拉伸强度可达266.9 MPa和44.7 MPa,极限氧指数为24.6 %;最大热释放峰值下降到366.9 kW/m2,与PLA相比下降了39.3 %,有效降低复合材料的火灾危险性。  相似文献   

14.
A vinyl phosphonic acid based flame retardant coating has been applied on the surface of a glass-fibre reinforced epoxy (GRE) composite substrate using a UV polymerisation technique. On exposure to heat the poly (vinyl phosphonic acid) (PVPA) coating thus obtained, intumesces and acts as a thermal insulator, providing active fire protection to the composite structure. Samples with ∼300 and 500 μm thick coatings were prepared. The fire performance of the coated GRE composite was studied by cone calorimetry at 35 and 50 kW/m2 heat fluxes. While the sample with ∼500 μm thick coating did not ignite at both heat fluxes, the one with the ∼300 μm thick coating ignited at 50 kW/m2, however the time-to-ignition was delayed from 60 s in the uncoated sample to 195 s and the peak heat release rate reduced from 572 kW/m2 to 86 kW/m2. The coatings did not peel off when subjected to a tape pull test and resisted cracking/debonding during an impact drop test of up to 5 J energy. However, the coatings are hydrophilic, showing significant mass loss in a water soak test. The improvement of the hydrophobicity of these coatings is a focus of our future research.  相似文献   

15.
The influence of the basalt powder (BP) on mechanical properties as well as on thermal stability and flammability of the isotactic polypropylene (iPP) composites was investigated. Thermo‐mechanical stability of the pure polypropylene and composite materials containing from 5 up to 40 wt% BP was defined in static and dynamic testing conditions with the use of the heat distortion temperature measurement, vicat softening point temperature test, and dynamic mechanical thermal analysis. All measurements showed, unequivocally, a significant improvement of thermo‐mechanical stability of the composite materials which was directly related to an increasing amount of inorganic filler. A research conducted on the mechanical properties revealed that stiffness and hardness of polypropylene‐based composites was affected by the addition of the filler, leading to a strong increase of both mechanical parameters. Moreover, the application of thermogravimetric analysis and cone calorimetry measurements allowed to determine the composites with highest thermal stability, which was dependent on the concentration of the filler. Changes observed in the polypropylene‐based composites properties were related to an increase of thermal diffusivity caused by presence of the BP measured by modified Angstrom method. POLYM. ENG. SCI., 59:E71–E79, 2019. © 2018 Society of Plastics Engineers  相似文献   

16.
Currently, intumescent flame retardants (IFR) are often used in the flame retardant modification of polylactic acid (PLA). Due to the high loading, it will weaken the mechanical properties of PLA. In this study, lamellar lanthanum-based DOPO derivative (La@DDP) is prepared by solution method, and it acts as a flame retardant agent was added into PLA with IFR. The results show that PLA composite passes the UL94 V-0 rating with a limiting oxygen index (LOI) of 32.0, in the addition of 4.5 wt% IFR and 1.5 wt% La@DDP. Moreover, the peak heat release rate (PHRR) and total heat release (THR) of the PLA composite reduces by 31.0% and 23.2% compared to pure PLA, respectively. IFR/La@DDP agents assign the PLA composite with excellent thermal stability and carbon-forming ability. Through the analysis of residual char, the synergistic flame retardant mechanism between IFR and La@DDP in PLA composite is discussed. Notably, the tensile strength and elongation at break of the PLA composites are only reduced by 4.03% and 9.51% compared to pure PLA. This work provides a novel lanthanum-based flame retardant agent for designing PLA composites with good fire safety and mechanical properties, and it will broaden the application range of PLA.  相似文献   

17.
This study investigates the incorporation of castor oil–based rigid polyurethane foam with mineral fillers feldspar or kaolinite clay in order to enhance the mechanical, thermal, and flame retardant properties. Influence of mineral fillers on the mechanical strength was characterized by compressive strength and flexural strength measurement. Thermogravimetric analysis (TGA) was performed to diagnose the changes in thermal properties, while cone calorimeter test was performed to ascertain the flame retardancy of the mineral filler–incorporated rigid polyurethane foam composites. Results showed that the foams incorporated with mineral filler demonstrated up to 182% increase in compressive strength and 351% increase in flexural strength. Thermal stability of these composite foams was also found to be enhanced on the incorporation of kaolinite clay filler with an increase in 5% weight loss temperature (T5%) from 192°C to 260°C. Furthermore, peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR), and total smoke release (TSR) were also found to decreased on the incorporation of mineral filler in the rigid polyurethane foam. So mineral fillers are ascertained as a potential filler to enhance the mechanical, thermal, and flame retardant behaviors of bio‐based rigid polyurethane foam composites.  相似文献   

18.
Structures need to be designed to maintain their stability in the event of a fire. The travelling fire methodology (TFM) defines the thermal boundary condition for structural design of large compartments of fires that do not flashover, considering near field and far field regions. TFM assumes a near field temperature of 1200°C, where the flame is impinging on the ceiling without any extension and gives the temperature of the hot gases in the far field from Alpert correlations. This paper revisits the near field assumptions of the TFM and, for the first time, includes horizontal flame extension under the ceiling, which affects the heating exposure of the structural members thus their load-bearing capacity. It also formulates the thermal boundary condition in terms of heat flux rather than in terms of temperature as it is used in TFM, which allows for a more formal treatment of heat transfer. The Hasemi, Wakamatsu, and Lattimer models of heat flux from flame are investigated for the near field. The methodology is applied to an open-plan generic office compartment with a floor area of 960 m2 and 3.60 m high with concrete and with protected and unprotected steel structural members. The near field length with flame extension (fTFM) is found to be between 1.5 and 6.5 times longer than without flame extension. The duration of the exposure to peak heat flux depends on the flame length, which is 53 min for fTFM compared with 17 min for TFM, in the case of a slow 5% floor area fire. The peak heat flux is from 112 to 236 kW/m2 for the majority of fire sizes using the Wakamatsu model and from 80 to 120 kW/m2 for the Hasemi and Lattimer models, compared with 215 to 228 kW/m2 for TFM. The results show that for all cases, TFM results in higher structural temperatures compared with different fTFM models (600°C for concrete rebar and 800°C for protected steel beam), except for the Wakamatsu model that for small fires, leads to approximately 20% higher temperatures than TFM. These findings mitigate the uncertainty around the TFM near field model and confirm that it is conservative for calculation of the thermal load on structures. This study contributes to the creation of design tools for better structural fire engineering.  相似文献   

19.
The role of nano-SiO2 and ultra-fine boron carbide on the properties of alumina-graphite materials was investigated.The study showed that the ultra-fine boron carbide added modified the microstructure of residual carbon and promoted the chemical bond between residual carbon from phenolic resin and flake graphite.The carbon white could strengthen the residual carbon from phenolic resin.These two additives improved the mechanical properties of AG refractories at both room temperature and high temperature,and thermal shock resistance was improved noticeably.When the two additives were doped together,carbon white could retard the evaporation of B2O3.Thermal shock resistance was guaranteed with a smaller amount of ultrafine born carbide.  相似文献   

20.
A thermally conductive linear low‐density polyethylene (LLDPE) composite with silicon carbide (SiC) as filler was prepared in a heat press molding. The SiC particles distributions were found to be rather uniform in matrix at both low and high filler content due to a powder mixing process employed. Differential scanning calorimeter results indicated that the SiC filler decreases the degree of crystallinity of LLDPE, and has no obvious influence on the melting temperature of LLDPE. Experimental results demonstrated that the LLDPE composites displays a high thermal conductivity of 1.48 Wm?1 K?1 and improved thermal stability at 55 wt % SiC content as compared to pure LLDPE. The surface treatment of SiC particles has a beneficial effect on improving the thermal conductivity. The dielectric constant and loss increased with SiC content, however, they still remained at relatively low levels (<102 Hz); whereas, the composites showed poorer mechanical properties as compared to pure LLDPE. In addition, combined use of small amount of alumina short fiber and SiC gave rise to improved overall properties of LLDPE composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号