首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
机床在加工的过程中会因为物理变形和热变形,使得加工零件的精度难以保证,因此必须对运动中的影响机床精度的误差源进行误差分析及实时补偿。利用激光干涉仪和球杆仪对数控机床定位精度进行检测,并建立了关于机床变形的检测数据的数学模型,确定了定位误差补偿方法,同时以具体的数控机床为例进行了定位精度检测与误差补偿,最后对补偿效果进行了分析。结果表明:该定位误差检测及补偿方法具有可行性与实用性,使数控机床的定位精度得到了显著的提高。  相似文献   

2.
丘永亮 《机床与液压》2016,44(13):93-95
热误差是数控加工中的主要误差源之一,对零件加工精度有非常大的影响。对数控车床热误差进行补偿可以有效地提高机床的加工精度。在数控车床的加工过程中,采用铂电阻温度传感器对数控加工中关键点的温度进行实时测量,再配合线性回归理论建立数控车床的热误差模型。最后根据热误差模型对数控车床的加工误差进行实时补偿,经验证该技术是可靠有效的。  相似文献   

3.
主轴是机床的关键部件,其热变形误差是影响精密机床工作精度的主要因素之一。文章对镗床主轴的不同热变形误差形式及对加工精度的影响进行了讨论。依据ISO和ASME标准建立某型号精密卧式坐标镗床热变形误差的测试环境,采用高精度测试系统对其主轴进行温度和热变形误差的实验测试与分析。结果表明,主轴热变形误差严重影响机床加工精度,主轴转速影响其达到热平衡的时间及热误差大小,需采取有效措施对热变形误差进行补偿,优化热结构,进一步提高机床加工精度。  相似文献   

4.
热误差是精密机床最主要的误差源之一。主轴是机床的关键部件,其热误差直接影响机床的加工精度。文章以某型号精密卧式加工中心主轴为对象,对其温度场和热变形进行了仿真分析。根据仿真结果发现主轴轴向热变形更严重,并结合机床结构确定温度传感器布置位置。在此基础上,对不同转速下主轴部分位置温度和轴向热误差进行现场测试。运用最小二乘法建立热误差补偿模型,直接结合机床FANUC数控系统实施主轴轴向热误差补偿。经实验验证,补偿后主轴轴向热误差减小了85%以上。  相似文献   

5.
在高速高精度机床的加工过程中,由于各种热源的作用会导致机床产生热变形,从而影响其加工精度.针对整机热变形误差是影响机床加工精度的最大误差源,提出采用模糊聚类分析法对测温点进行优化选择,并利用多元线性回归方法建立整机热变形与温度之间的数学模型.结果表明,经优化后的温度变量应用到热误差模型中能够有效的预测整机的热变形,并且补偿效果很好.  相似文献   

6.
针对机床导轨变形特别是大型、重型机床的导轨变形降低加工精度的问题,提出了利用软件误差补偿技术来消除导轨变形对加工精度的影响.以数控车床为例,分析了导轨变形对加工零件的影响,提出了利用最小二乘法拟合导轨变形曲线,阐述了利用指令修正技术进行误差补偿的原理,为进行数控机床全局误差补偿提供了理论依据和技术参考.对CK6140型数控车床进行了补偿,有效地改善了加工精度.  相似文献   

7.
热误差是影响机床加工精度的重要误差源。简要介绍THK6370卧式加工中心主轴热变形的测量及建模方法,详细阐述热误差补偿在基于总线的数控系统上嵌入式集成的方法,提出热误差补偿模块的软硬件设计方案,并开发补偿模块。在THK6370上进行实验验证,结果表明,加工精度提高了30%。  相似文献   

8.
新设计的滑枕热伸长补偿机构消除了滑枕达到热平衡之前因热变形造成的瞬态热误差。通过试验,测出机床达到热平衡后主轴的温度误差和机床对应的温度场,并利用最小二乘法拟合出该误差和温度值之间的数学模型,将数学模型输入数控系统中进行机床主轴的稳态热补偿,即温度误差补偿。这两种热补偿相结合的方式进一步提高了机床的加工精度,保证了数控龙门柔性生产线各种零件的加工精度要求。  相似文献   

9.
丝杠对机床精度及稳定性的影响和解决方法   总被引:2,自引:0,他引:2  
分析了丝杠的螺距误差和热变形误差,并找出了有效的解决方法.从而保证了机床加工的精度和加工精度的稳定性.  相似文献   

10.
为减少热变形对精密加工精度影响,对夏冬两季节机床主轴箱上温升和热变形及环境温度的影响进行了测试分析,并采用BP神经网络模型化的Volterra级数非线性系统实现热误差建模。分析结果表明:夏天环境温度受主轴箱散热影响而温度迅速升高;冬季机床散热较快,主轴箱上温升比较明显,环境温度几乎不变;同一台机床在夏季和冬季的热变形规律相似而变形量稍有不同。通过实验验证了该模型具有预测精度高的优点,为数控机床热误差实时补偿提供了参考。  相似文献   

11.
Calibration and modeling of thermally induced errors is a critical part of enhancing machine accuracy by software error compensation. In most applications, parametric thermal errors of a machine tool are calibrated and modeled individually by air-cutting experiments. Calibrating thermal errors individually is time-consuming and may neglect thermal interaction among thermal sources. The accuracy of the air-cutting model in real machining is also questionable. In this report, thermal errors of multiple machine axes in real cutting were calibrated simultaneously by a quick set-up measurement system consisting of on-machine probes and artifacts. Characteristics of thermal errors in real cutting under different cutting conditions, cutting paths and workpiece materials were investigated. It was found that thermal errors in real machining were distinct from those in air cutting.  相似文献   

12.
机床的热误差已成为影响机床工作性能的最主要因素之一,滚珠丝杠作为机床进给系统关键部件,其热变形直接影响着机床的加工精度。因此,对滚珠丝杠进行热误差控制与补偿十分重要。过去几十年里,国内外学者对滚珠丝杠进给系统热误差研究可以分成三部分内容:热特性研究,热误差建模和热误差补偿。先通过滚珠丝杠热特性分析获取必要的参数,然后以此为基础进行合理的热误差建模,最后进行热误差检测及其补偿。以此为脉络展开,分别探讨了三部分内容国内外的研究现状以及存在的优缺点,并对未来的研究趋势进行了展望。  相似文献   

13.
薄壁件加工中的零件变形和让刀是影响加工精度的主要原因,首先,根据零件加工路径构建UKF预测模型;之后,把数控机床误差和在机测量系统误差作为已知噪声输入到UKF算法中,在机检测系统对序中尺寸进行测量作为过程转移噪声,上次过程转移噪声输入到下次预测中;最后,使用MATLAB预测出零件变形量。上次状态转移噪声输入到UKF算法中以提高预测对真实加工环境的模拟,运用在机检测技术把零件加工数据传输到UKF算法中提高变形预测精度,为薄壁件数控加工序中补偿提供数据依据。  相似文献   

14.
郭俊  王颖  李卓  邓国群 《机床与液压》2023,51(18):67-73
数控机床加工精度受到机床零部件、外部环境等因素的影响,从而需要添加适当的补偿参数确保加工精度的稳定性,另外,不同车床不同时刻的补偿参数实时变化。为此,提出一种基于关联规则及神经网络方法的智能误差补偿模型。以实际生产中产生的数据集为基础,通过Apriori算法对数据集进行筛选;对各个特征值与补偿参数进行归一化处理,以提高数据的收敛速度;利用神经网络模型为不同情形下的车床搜寻最佳补偿参数模型,从而构建起最佳的智能误差补偿模型;经过智能误差补偿后,对生产的物件进行图像识别,分析其是否符合精度要求。仿真测试结果表明:针对训练集数据和测试集数据,车床稳定性分别提高了0.695和0.713。实测结果显示:利用上述方法,对30个产品进行雕刻,精度均符合要求。因此,智能误差补偿模型能够提高车床加工稳定性,提升产品合格率。  相似文献   

15.
数控机床的热变形误差是影响其加工精度的主要因素。针对当前机床热误差难以解决的问题,提出一种融合模糊聚类理论、灰色关联理论和多元线性回归理论的热误差建模及补偿原理,通过应用于实验室自主研制的AGPM,经机床温度场的测点优化分析、多元线性回归求解,建立了精确的热误差补偿模型。经补偿验证,该原理理论正确、简单易行、稳定可靠,可以大幅减小机床的热变形误差。  相似文献   

16.
王调品  李峰 《机床与液压》2021,49(24):88-91
为提高某立式加工中心整机加工精度,借助旋量理论建立完备立式加工中心空间误差模型,在此基础上实现机床空间误差有效补偿.以旋量理论为基础推导并建立机床刀具运动链与工件运动链运动学正解,分析机床21项几何误差原理,在考虑21项几何误差的基础上建立该立式加工中心完备空间误差模型;利用九线法完成各项几何误差辨识;基于旋量运动学正解求解机床运动学逆解后得出运动轴实际运动路径,并通过体对角线实验对比补偿前后的效果.结果表明:所提补偿方法补偿效果显著,验证了机床空间误差模型的准确性,实现了提高机床加工精度的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号