首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
研究了原位合成纳米MoS2微粒/聚酯聚合物的疗法,试验了分散有纳米MoS2微粒/聚酯聚合物的航空润滑油的润滑性能。结果表明,在重载和高速滑动下,纳米MoS2微粒/聚酯聚合物改性的航空润滑油具有良好的润滑性能。  相似文献   

2.
润滑膜厚度的测量是开展纳米量级薄膜润滑状态研究的关键问题。利用光干涉法相对光强原理研制出一种纳米级润滑膜厚度测量仪,在低速低载荷条件下对点接触纯滑动润滑接触中心区润滑膜厚度进行测量,并讨论接触中心区和润滑膜厚度与速度和载荷之间的关系。结果表明:已测量的膜厚值已达到纳米量级,在设定工况下润滑膜厚度随速度增大而增大,随载荷增大而减小;比较Hamrock-Dowson公式计算结果和实验结论证明,这种仪器能有效实现对纳米级润滑薄膜厚度的测量。  相似文献   

3.
本文研究了用电化学方法得到的聚N-甲基吡咯(PNMP)薄膜用作滑动导轨副的支承工作表面的摩擦学性能。PNMP薄膜通过电化学聚合直接沉积在支承外表面,同时用作运动副元素和运动副的固体润滑物质。研究考察了薄膜厚度,法向负荷以及相对滑动速度对PNMP薄膜的摩擦和磨损性能的影响。揭示了PNMP薄膜在低负荷,低速度,但对运动精度及精度保持性要求极高的纳米级超精密测度仪器的进给导轨系统的应用前景。  相似文献   

4.
纳米级金属粉对润滑油摩擦磨损性能的影响   总被引:32,自引:8,他引:32  
在MHK-500型环块摩擦磨损试验机上,研究了纳米级金属粉加入到矿物油中的润滑性能,结果表明, 加有纳米级金属粉的润滑油表现出优良的抗磨性能,三乙醇胺与铜粉复配具有复合效应。  相似文献   

5.
研究碳纤维/聚四氟乙烯(CF/PTFE)、玻璃纤维/聚四氟乙烯(GF/PTFE)复合材料与氮化硅陶瓷配副在海水环境下的摩擦学性能与润滑机制,分析滑动速度对摩擦副海水润滑性能的影响规律。结果表明:在海水润滑条件下,随着滑动速度的增加,PTFE、CF/PTFE、GF/PTFE材料与Si3N4陶瓷配副时的摩擦学性能均有明显改善,摩擦因数与磨损率均呈显著降低的趋势,其中CF/PTFE复合材料表现出更为优异的摩擦学性能,在1 000 r/min滑动速度下摩擦因数低至0.026。磨损表面表征结果表明,在海水润滑条件下,PTFE基复合材料在摩擦过程中由于摩擦化学反应生成了润滑膜,可为摩擦副提供良好的润滑和减磨作用,从而减少摩擦磨损行为的发生。  相似文献   

6.
在M-2000摩擦磨损试验机上研究了P涂层(聚酯树脂)、E涂层(环氧树脂)和P/E涂层3种粉末涂料型固体润滑膜摩擦磨损性能,并与溶剂粘结型固体润滑膜进行摩擦磨损试验对比。结果表明:粉末涂料型固体润滑膜摩擦磨损性能优于溶剂粘结型固体润滑膜;摩擦偶对相对滑动速度较大时,P涂层表现了极好的润滑耐磨性能,摩擦偶对相对滑动速度较小时,WE涂层表现较好的润滑耐磨性能。  相似文献   

7.
王文明  李昭昆 《轴承》1999,(3):29-29,43
为降低制造轴承材料的成本,决定采用球墨铸铁来代替黄铜作为轴承保持架的材料。因为首次生产这种材料,为保证产品的质量,采用无损检测的方法对球墨铸铁材料的生产工艺过程进行技术及质量把关。1 铸铁的声特性1.1 单一材料中的声速在单一组织的“无限大”固体材料中,超声波纵波的速度为V=Eρ1-σ(1+σ)(1-2σ)(1)式中 ρ材料的密度E杨氏模量σ泊松系数几种铸铁基体组织材料的声速为:珠光体加铁素体:5944.6m/s;贝氏体:5915.7m/s;马氏体:5879.6m/s。可见,在单一组织材料中声速…  相似文献   

8.
几种纳米润滑剂的摩擦学特性   总被引:3,自引:0,他引:3  
采用超速粉碎工艺结合抗凝聚技术研制了三种不溶于水的纳米润滑添加剂:二硫化钼(MoS2)、聚四氟乙烯(PTFE)和滑石粉(talcum)。配方侧重考察了这些纳米级固体润滑剂的摩擦学特性,尤其是针对铜-钢摩擦副的摩擦磨损特性。结果发现在铜-钢摩擦副条件下,纳米级PTFE及滑石粉具有较好的抗铜磨损和降低摩擦系数的减摩性能;含硫的添加剂(包括MoS2)反而对铜引起不良摩擦的润滑作用。  相似文献   

9.
超高速磨削及其关键技术   总被引:1,自引:0,他引:1  
一、超高速磨削技术的发展 磨削是借助于砂轮表面大量磨粒作切刃去除材料的一种方法,在现代制造业中占有重要的地位。一般来讲,按砂轮线速度V的高低将磨削分为普通磨削(Vs<45m/s)、高速磨削(45≤Vs<150m/s)、超高速磨削(Vs≥150m/s)。 超高速切削的概念源于德国Salomon博士1929年所提出的2个假设,即在高速区当切削速度超过切削温度的“死谷”区域,继续提高切削速度将会使切削温度明显下降,单位切削力也随之降低。经过长期的研究和开发,超高速切削技术日趋成熟,工艺和速度范围大为扩展…  相似文献   

10.
采用界面生长法,以醋酸铜为母体,抗坏血酸(Vc)为还原剂,吐温-85为修饰剂,正丁醇为生长剂,合成了粒径约15.5 nm的油溶性球形纳米铜粉;通过X-射线衍射(XRD)和透射电子显微镜(TEM)对纳米铜粉进行了表征;将其作为润滑油添加剂分散于SF15W/40汽油机油中制得纳米润滑油;通过高浓度激光粒度仪考察了纳米润滑油的分散稳定性;通过UMT-Ⅱ摩擦磨损实验机考察了纳米润滑油的摩擦学性能;采用扫描电子显微镜(SEM)分析了磨损表面形貌.结果表明:纳米铜粉在润滑油中具有优异的分散稳定性;纳米铜粉显著改善了SF15W/40汽油机油的润滑性能,其最佳添加量为0.8%.分析认为纳米铜在摩擦表面的划痕和犁沟处沉积并铺展成膜,从而改善了摩擦磨损性能.  相似文献   

11.
The wear and sliding friction response of a hybrid copper metal matrix composite reinforced with 10 wt% of tin (Sn) and soft solid lubricant (1, 5, and 7 wt% of MoS2) fabricated by a powder metallurgy route was investigated. The influence of the percentages of reinforcement, load, sliding speed, and sliding distance on both the wear and friction coefficient were studied. The wear test with an experimental plan of six loads (5–30 N) and five sliding speeds (0.5–2.5 m/s) was conducted on a pin-on-disc machine to record loss in mass due to wear for two total sliding distances of 1,000 and 2,000 m. The results showed that the specific wear rate of the composites increased at room temperature with sliding distance and decreased with load. The wear resistance of the hybrid composite containing 7 wt% MoS2 was superior to that of the other composites. It was also observed that the specific wear rates of the composites decreased with the addition of MoS2. The 7 wt% MoS2 composites exhibited a very low coefficient of friction of 0.35. The hardness of the composite increased as the weight percentage of MoS2 increased. The wear and friction coefficient were mainly influenced by both the percentage of reinforcement and the load applied. Wear morphology was also studied using scanning electron microscopy and energy-dispersive X-ray analysis.  相似文献   

12.
As the traditional graphite-based composites cannot meet the requirement of rapid developing modern industry, novel sliding electrical contact materials with high self-lubricating performance in multiple environments are eagerly required. Herein a copper-based composite with WS2 and graphite as solid lubricant are fabricated by powder metallurgy hot-pressed method. The friction and wear behaviors of the composites with and without current are investigated under the condition with sliding velocity of 10 m/s and normal load of 2.5N/cm 2 in both air and vacuum. Morphologies of the worn surfaces are observed by optical microscope and compositions of the lubricating films are analyzed by XPS. Surface profile curves and roughness of the worn surfaces are obtained by 2205 surface profiler. The results of wear tests show that the friction coefficient and wear volume loss of the composites with current are greater than that without current in both air and vacuum due to the adverse effects of electrical current which damaged the lubricating film partially and roughed the worn surfaces. XPS results demonstrate that the lubricating film formed in air is composed of oxides of Cu, WS2 , elemental S and graphite, while the lubricating film formed in vacuum is composed of Cu, WS2 and graphite. Because of the synergetic lubricating action of oxides of Cu, WS2 and graphite, the composites show low friction coefficient and wear volume loss in air condition. Owing to the fact that graphite loses its lubricity which makes WS2 become the only lubricant, severe adhesive and abrasive wear occur and result in a high value of wear rate in vacuum condition. The formation of the lubricating film on the contact interface between the brush and ring is one of the factors which can greatly affect the wear performance of the brushes. The low contact voltage drop of the composites in vacuum condition is attributed to the high content of Cu in the surface film. This study fabricated a kind of new sliding electrical contact self-lubricating composite with dual-lubricant which can work well in both air and vacuum environments and provides a comprehensive analysis on the lubrication mechanisms of the composite.  相似文献   

13.
A comparative study of wear, friction, viscosity, lubricant degradation and exhaust emissions was carried out on a palm oil and a mineral oil-based commercial lubricating oil. The wear and friction test was at first conducted using a reciprocating universal wear machine followed by a two-stroke gasoline Yamaha portable generator set, ET 950. The test conditions for the bench test were: pressure, 3.0 MPa; sliding speed, 0.20 m s−1; sliding stroke, 80 mm; room temperature, 25°C. The test conditions for the actual engine were: constant load, 0.4 kW for wear of the piston ring but various loads for exhaust emissions and constant speed, 2800 rpm. Analysis of post bench test lubricating oils was performed using ISL viscometer, TAN/TBN analyzer and FT-IR spectroscopy to investigate viscosity, TAN value and the oxidation level, respectively. Exhaust emission analysis was also performed using a BOSCH exhaust gas analyzer. Experimental results demonstrated that the palm oil based lubricating oil exhibited better performance in terms of wears, and that the mineral oil based lubricating oil exhibited better performance in terms of friction. However, the palm oil based lubricant was the more effective in reducing the emmission levels of CO and hydrocarbon.  相似文献   

14.
B.K. Prasad   《Wear》2006,260(11-12):1333-1341
This study pertains to the examination of sliding wear behaviour of a gray cast iron over a range of sliding speeds and applied pressures in dry and (oil and oil plus graphite) lubricated conditions. Wear properties characterized were wear rate and frictional heating. The cast iron revealed various forms and sizes of graphite particles in a matrix of pearlite and limited quantity of free ferrite. Different solidification patterns, as controlled by the chemical composition and/or carbon equivalent of the alloy and rate of cooling, were thought to be responsible for the varying morphology of the graphite phase formed in the material matrix. Occasional decohesion of graphite at ferrite/graphite interfacial regions was also observed.The wear rate of the cast iron increased with the speed and pressure of sliding due to increasing severity of wear condition. The specimens tended to lose proper contact with the disc at larger pressures when slid dry. This was attributed to severe cracking tendency of the material. On the contrary, specimen seizure was noticed in the oil and oil plus graphite lubricated conditions; the seizure resistance (pressure) decreased with sliding speed in presence of the lubricants. The wear rate versus pressure plots attained different slopes, i.e. the rate of increase in wear rate with pressure, depending on the test environment. One slope and inappreciable effect of pressure on wear rate were noticed due to substantial cracking tendency of the cast iron when tested in dry condition. In the oil lubricated condition also, virtually one slope was observed but it was higher than that in dry condition indicating greater sensitivity of wear rate towards the applied pressure. Also, the samples attained lower wear rate in oil than in dry condition in view of suppressed cracking tendency causing more stable lubricating film formation in presence of the oil lubricant. Addition of graphite particles to the oil lubricant caused a further reduction in wear rate because of the enhanced possibility of a more stable lubricant film formation due to smearing of the graphite particles. In this case, the slope of the wear rate versus pressure plots was the least in the intermediate range of pressures irrespective of the sliding speed owing to more stable lubricating film formation.A higher rate of temperature increase with test duration (intermediate sliding distance) in the beginning was attributed to the abrasive action of the hard debris generated through the fragmentation of the initially contacting asperities. A subsequently observed lower rate of increase at longer durations could be owing to the occurrence of mild wear condition in view of less stressing of the contacting asperities and increased stability of the lubricant film formed. Increase in the rate of frictional heating at still longer durations resulted from destabilization of the lubricating film.Frictional heating increased with applied pressure and sliding speed in view of increasing severity of wear condition. The rate of increase in frictional heating was low initially up to a specific pressure followed by a higher rate of increase at still larger pressures when the tests were conducted in oil plus graphite at both the sliding speeds and in the oil lubricant at the lower speed. A constant (high) rate of increase in frictional heating with pressure was noticed in the dry condition at both the sliding speeds and in the oil lubricant at the higher speed. Low rate of frictional heating with pressure was attributed to the occurrence of mild wear condition while a higher rate of frictional heating with pressure resulted from the occurrence of severe wear condition. As far as the influence of test environment on frictional heating is concerned, least frictional heat was generated in the oil plus graphite lubricant mixture while the maximum was noticed in dry condition, intermediate response of the samples being observed in oil. Formation of more stable lubricating film was thought to be responsible for lower frictional heating in the lubricated conditions; the presence of graphite in the oil lubricant increased the extent of lubricating film formation and stability of the film so formed.The wear response of the samples has been explained in terms of cracking tendency and lubricating effects of graphite, predominance of the counteracting effects of the two parameters over each other, and lubricating film formation by the external oil (plus graphite) lubricant on the sliding surfaces in specific test conditions. Characterization of wear surfaces, subsurface regions and debris particles of the material enabled to further substantiate the observed wear performance of the samples.  相似文献   

15.
In this article, the tribological behaviors of Cu–30wt% Pb (denoted as CuPb) alloy sliding against aluminum bronze ZCuAl9Mn2 lubricated by seawater were investigated. It was found that the friction coefficients decrease with increasing load and sliding speed, and the wear rates increase slightly with applied load but decrease with sliding speed. The low friction coefficient and wear rate can be attributed to the seawater as a lubrication medium, which has lubricating, cooling, and corrosive effects on the sliding couple.  相似文献   

16.
In this article, the tribological behaviors of tin-based Babbitt alloy ZChSnSb 8–8 sliding against AISI 302 stainless steel lubricated by seawater were investigated. The results indicated that the friction coefficient decreases with increasing load and sliding speed, and the wear rate increases slightly with load but decreases with sliding speed. The low friction coefficient and wear rate are attributed to the unique “concrete structure” and seawater. As a lubrication medium, seawater has lubricating, cooling, and corrosive effects on the sliding couple.  相似文献   

17.
研究了铝青铜热喷涂层/GCr15钢摩擦副在干摩条件下,载荷50-250N和速度0.4、0.8m/s时的磨损行为。结果表明:铝青铜热喷涂层在低速轻载条件下的磨损机制主要是犁削磨损;中等速度和载荷下主要是犁削磨损和剥层磨损;而在高速重载条件下主要是粘着磨损。  相似文献   

18.
粉末涂料固体润滑膜滚动/滑动复合干摩擦磨损特性研究   总被引:1,自引:1,他引:1  
在M-2000磨损试验机上考察了经过一次处理和经两次处理的40Cr钢环表面喷涂3种粉末涂料型固体润滑膜(P型、H型、E型)试样,在线载荷为104N/m、相对滑动速度为0.042 m/s、干摩擦滚动/滑动复合磨损条件下的摩擦磨损性能,通过扫描电子显微镜(SEM)对试样磨损表面以及磨屑进行了显微观察。结果表明:底材经过一次处理(化学底膜处理)的复合固体润滑膜试样,P型和E型在磨损后期的摩擦因数分别稳定在0.38和0.32,而H型在0.40左右跳动;P型和H型的涂层磨损脱落期为60 m in左右,E型为120 m in左右;质量磨损从小到大顺序为P型相似文献   

19.
刘中华  刘政  杜慧杰 《润滑与密封》2022,47(10):176-184
磁浮列车中部分制动闸片在服役时一直处于受流状态,导致材料磨损加剧,影响闸片的服役寿命。为研究中低速磁悬浮列车制动闸片在受流工况下的摩擦磨损性能,以制动闸片使用的铜基粉末冶金材料和刹车盘使用的Q235B材料为摩擦副,研究不同制动速度下铜基粉末冶金/Q235B摩擦副的载流摩擦磨损行为。结果表明:无电流时随着滑动速度的增大,摩擦因数及磨损率整体呈现下降的趋势,载流时随着滑动速度的增大,摩擦因数整体呈现下降的趋势,而磨损率则整体呈现上升的趋势;无电流时磨损后的铜基粉末冶金材料表面覆盖着一层靛色的第三体层,该第三体层低速时主要以颗粒状为主,随着速度的增加逐渐被压实成连续致密状,高速时因黏着磨损加剧使得连续致密状第三体被破环,导致材料的摩擦因数和磨损率呈现反向增长的趋势;载流下磨损后的铜基粉末冶金材料表面出现了以机械磨损为主和以电弧烧蚀为主的2个区域,其中以机械磨损为主的区域依然是由靛色的第三体层组成,而以电弧烧蚀为主的区域表面则覆盖了一层金色熔融状物质,并且随着速度的增大,烧蚀区面积也逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号