首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined whether norepinephrine at pharmacologically relevant doses induces increased expression of c-fos mRNA in rat aortic rings. c-fos mRNA was expressed at norepinephrine concentrations known to cause minimum and maximum contraction of rat aorta in vitro. At the concentration known to cause maximum contraction, norepinephrine produced a marked and sustained increase of c-fos mRNA expression. Induction of c-fos was blocked completely by the alpha 1-adrenergic antagonist prazosin, partially by the alpha 2-adrenergic antagonist yohimbine, and not at all by the beta-adrenergic antagonist propranolol. A prazosin inhibition curve showed that 1 nmol/L prazosin inhibited 10 micromol/L norepinephrine induced c-fos expression by 40%. At the pharmacologic dose known to cause maximum contraction, norepinephrine induces c-fos mRNA expression through the alpha-adrenoceptor in rat aortic rings.  相似文献   

2.
The contractile effect of norepinephrine (NE) on isolated rabbit bronchial artery rings (150-300 microns in diameter) and the role of alpha 1- and alpha 2-adrenoceptors (AR) on smooth muscle and endothelium were studied. In intact arteries, NE increased tension in a dose-dependent manner, and the sensitivity for NE was further increased in the absence of endothelium. In intact but not in endothelium-denuded arteries, the response to NE was increased in the presence of both indomethacin (Indo; cyclooxygenase inhibitor) and NG-nitro-L-arginine methyl ester [L-NAME; nitric oxide (NO) synthase inhibitor], indicating that two endothelium-derived factors, NO and a prostanoid, modulate the NE-induced contraction. The alpha 1-AR antagonist prazosin shifted the NE dose-response curve to the right, and phenylephrine (alpha 1-AR agonist) induced a dose-dependent contraction that was potentiated by L-NAME or removal of the endothelium. The sensitivity to NE was increased slightly by the alpha 2-AR antagonists yohimbine and idazoxan, and this effect was abolished by Indo or removal of the endothelium. Similarly, contractions induced by UK-14304 (alpha 2-AR agonist) were potentiated by Indo or removal of the endothelium. These results suggest that NE-induced contraction is mediated through activation of alpha 1- and alpha 2-ARs on both smooth muscle and endothelium. Activation of the alpha 1- and alpha 2-ARs on the smooth muscle causes contraction, whereas activation of the endothelial alpha 1- and alpha 2-ARs induces relaxation through release of NO (alpha 1-ARs) and a prostanoid (alpha 2-ARs).  相似文献   

3.
4.
Alpha2-adrenergic receptors (alpha2-ARs) in vascular smooth muscle cells are known to mediate vasoconstriction; however, it is unknown which of the 3 subtypes of alpha2-AR (alpha2A, alpha2B, or alpha2C) is expressed in vascular tissue. We have used subtype-specific probes in in situ hybridization and RNase protection assays to analyze the expression of alpha2-AR in the thoracic aorta of New Zealand White (NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits, a model for atherosclerosis. We found that the alpha2A-AR mRNA was in endothelial and smooth muscle cells in both NZW and WHHL aorta. In addition, the shoulders and subendothelial regions of the atherosclerotic lesions in WHHL aorta showed abundant expression of alpha2A-AR mRNA. Antibodies to macrophage (RAM-11) and smooth muscle cell (HHF-35) antigens were used to localize macrophage and smooth muscle cells in aortic sections from WHHL rabbits. The expression of alpha2A-AR mRNA within the lesions of WHHL rabbits correlated with the presence of infiltrating macrophages. We discuss the potential role of alpha2A-ARs in macrophage function and in promoting atherosclerosis.  相似文献   

5.
Extracellular nucleotides, particularly ATP, are involved in the modulation of arterial vasomotricity via P2 purinoceptors present on smooth muscle and endothelial cells. These nucleotides could also be implicated in the smooth muscle cell hyperplasia observed in intimal lesions. In this study, we tried to define the potential role of the P2Y2 (P2u) purinoceptor by studying its expression in normal and balloon-injured rat aortas. The cloning of a rat P2Y2 cDNA from a rat smooth muscle cell cDNA library made it possible to study P2Y2 expression both by Northern blot and in situ hybridization. Northern blot experiments indicated that P2Y2 mRNA was present in rat medial aortic smooth muscle and in cultured rat aortic smooth muscle cells. In situ hybridization indicated that P2Y2 mRNA was present in endothelial cells of the intima and in some smooth muscle cells scattered throughout the media of adult rat aortas, while almost all medial smooth muscle cells of rat embryo aorta expressed this receptor. In contrast with adult aortic media, the majority of neointimal smooth muscle cells found in aortic intimal lesions either 8 or 20 days after balloon injury were positive for P2Y2 mRNA. Moreover, a subpopulation of neointimal cells localized at the luminal surface could be identified by a higher P2Y2 expression than the underlying neointimal smooth muscle cells. These data showing a strong expression of the P2Y2 purinoceptor in the neointima of injured arteries suggest that extracellular nucleotides may be involved, via this receptor, in the intimal hyperplasia and/or chronic constriction observed at the lesion site, and consequently in the restenotic process.  相似文献   

6.
To determine if muscarinic receptor-activation plays a role in oligodendrocyte development, the effect of carbachol a stable acetylcholine analog, on gene expression and proliferation was investigated. Using Northern blot analysis we showed that carbachol caused a time and concentration-dependent increase in c-fos mRNA. This effect was blocked by atropine, a non-selective muscarinic antagonist. In addition, the muscarinic-stimulated c-fos increase was inhibited by 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (H-7), a potent inhibitor of protein kinase C (PKC), but not by N-2-(p-bromocinnamylamino)-ethyl-5-isoquinoline-sulfonamide (H-89), a potent inhibitor of protein kinase A, suggesting the involvement of PKC in mediating the response. Down-regulation of PKC by overnight pre-treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) blocked only the phorbol ester-stimulated c-fos accumulation while no effect was observed in the carbachol-induced response. These results suggested that carbachol stimulated an H-7 sensitive PKC pathway which may be different than that activated by TPA. Further evidence for two separate mechanisms of proto-oncogene induction was provided by the additive effect of carbachol and TPA. Induction of c-fos mRNA by carbachol was dependent on both influx of extracellular Ca2+ and release from intracellular stores, as both EDTA and BAPTA blocked the response. Since activation of muscarinic receptors can affect cell division in other cellular systems, the effect of carbachol on [3H]thymidine and bromodeoxyuridine incorporation into oligodendrocyte DNA was measured. Carbachol stimulated DNA synthesis in oligodendrocyte progenitors. This effect was mediated by muscarinic receptors as [3H]thymidine incorporation was prevented or significantly reduced by the addition of atropine. In conclusion, the present findings suggest that, the neurotransmitter, acetylcholine may act as a trophic factor in developing oligodendrocytes, regulating their growth and development in the central nervous system.  相似文献   

7.
8.
BACKGROUND: The aim of this study was to determine whether (1) adrenergic activation is cardioprotective, (2) adrenergic cardioprotection occurs via adenosine receptor activation, and (3) ischemic preconditioning requires alpha-adrenergic activation. METHODS: Anesthetised open chest rabbits underwent 30 min coronary occlusion and 3 h reperfusion. Ischemic preconditioning was elicited with 5 min coronary occlusion and 10 min reperfusion. Activation of adrenergic receptors with endogenous norepinephrine was achieved with tyramine (0.28 mg/kg/min intravenously for 5 min). Adenosine receptors were blocked with 8-p-sulfophenyl theophylline (10 mg/kg intravenously), alpha 1-adrenergic receptors were selectively blocked with prazosin (0.1 mg/kg intravenously), and alpha-adrenergic receptors were blocked with phentolamine (4 mg/kg intravenously). RESULTS: Ischemic preconditioning reduced risk-adjusted infarct volume by 79% (P < 0.0005). This protection was attenuated by adenosine receptor blockade. Tyramine infusion resulted in a 1305% change from baseline plasma norepinephrine concentration (P < or = 0.01), and reduced infarct volume by 55% (P = 0.01). Adenosine receptor blockade abolished this protection. Blockade of alpha 1-adrenergic receptors with prazosin failed to abolish ischemic preconditioning (79 versus 89% reduction in infarct volume, without and with prazosin, respectively). Similarly, non-selective blockade of alpha-adrenergic receptors also failed to abolish ischemic preconditioning (79 versus 57% reduction without and with phentolamine, respectively). CONCLUSIONS: We conclude that the cardioprotection of ischemic preconditioning and alpha-adrenergic activation both involve adenosine, but ischemic preconditioning does not require alpha-adrenergic activation.  相似文献   

9.
This study was designed to further discriminate alpha1-adrenoceptor subtypes in rat aorta and prostate using functional experiments. Responses induced by phenylephrine were equilibrated in both tissues. The pA2 values and slope factors of several alpha1-antagonists were assessed using concentration-response curves. The antagonists used were prazosin, WB-4101, 5-methylurapidil (5-MU), HV-723, and tamsulosin. In addition, the effects of chloroethylclonidine (CEC) and nifedipine on phenylephrine-induced contractions were investigated. A high pA2 value for prazosin was observed in both tissues (aorta 9.84, prostate 9.19) and the ranking of each drug's pA2 value is as follows: tamsulosin > prazosin > WB-4101 > HV-723 > 5-MU in the aorta, and tamsulosin > prazosin > 5-MU > WB-4101 = HV-723 in the prostate. A significant difference between the pA2 value of each drug except for tamsulosin in the aorta and in prostate was observed (p < 0.01). Inhibition of contraction by pretreatment with CEC was 83.9 +/- 2.42% in the aorta, and 6.17 +/- 0.94% in the prostate. On the other hand, inhibition of maximal response by pretreatment with nifedipine (1 micromol/l) was 35.1 +/- 2.2% in the aorta and 24.5 +/- 3.1% in the prostate. A good correlation between these pA2 values and pKi values for recombinant human alpha1b-adrenoceptor expressed in CHO cells (aorta) and alpha1a-subtypes of CEC pretreated rat hippocampus (prostate) were observed. In conclusion, these results suggest that: (1) the contraction of these two tissues is mediated by alpha1H-adrenoceptor with a high affinity for prazosin; (2) alpha1H-adrenoceptors correspond to alpha1b-(aorta) and alpha1a-subtypes (prostate), and (3) each alpha1-adrenoceptor subtype in the aorta and prostate may be alpha1b-(aorta) and alpha1a-subtypes (prostate), respectively.  相似文献   

10.
11.
BACKGROUND: Catecholamines have been shown to aggravate atherosclerosis in animals and humans, and abnormal proliferation of vascular smooth muscle cells (VSMC) is a key event in the early stage of atherosclerosis. Catecholamines may be involved in such cell growth. Therefore, a series of experiments using cultured VSMC was performed to elucidate their possible mitogenic effect. METHODS AND RESULTS: We examined the mitogenic effect of catecholamines using rat aortic smooth muscle cells (VSMC) by measuring [3H]thymidine incorporation, checking with flow cytometry, and counting the cell number directly. Furthermore, the catecholamine-activated signal transduction pathway was assessed by measurement of the formation of inositol 1, 4, 5-triphosphate, intracellular Ca2+ concentration, mitogen-activated protein kinase (MAPK) activity, and mitogenic gene expression. Norepinephrine (NE) and phenylephrine stimulated [3H]thymidine incorporation and cell growth. Clonidine and isoproterenol showed little of such effects. Prazosin was more effective than either yohimbine or propranolol in suppressing the mitogenic effect of NE, indicating that catecholamine-induced VSMC proliferation is mediated by alpha 1-adrenoceptors. The alpha 1-adrenoceptor activation was coupled to pertussis toxin-insensitive Gq-protein and triggered phosphoinositide hydrolysis with subsequent activation of protein kinase C and MAPK in VSMC. In response to NE, both 42- and 44-kD MAPK were activated and tyrosine was phosphorylated. alpha 1-Adrenoceptor stimulation with NE also caused accumulation of c-fos, c-jun, and c-myc mRNA. Chloroethylclonidine completely blocked the alpha 1-adrenoceptor-mediated mitogenesis. CONCLUSIONS: The effect of catecholamines appears to be mediated via the activation of the chloroethylclonidine-sensitive alpha 1-adrenoceptors that triggers the phosphoinositide hydrolysis and activates the MAPK pathway, leading to DNA synthesis and cell proliferation.  相似文献   

12.
We found previously that stimulation of c-fos and c-myc mRNA expression are early events in hydrogen peroxide-induced growth in rat aortic smooth muscle (RASM) cells. In the present study, we investigated the role of phospholipase A2 (PLA2) and protein kinase C (PKC) in mediating hydrogen peroxide-induced c-fos mRNA expression in RASM cells. Mepacrine and p-bromophenacylbromide, potent inhibitors of PLA2 activity, blocked hydrogen peroxide-induced c-fos mRNA expression. Arachidonic acid, a product of PLA2 activity, stimulated the expression of c-fos mRNA with a time course similar to that of hydrogen peroxide. PKC down-regulation attenuated both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression by 50%. Nordihydroguaiaretic acid (a lipoxygenase-cytochrome P450 monooxygenase inhibitor) significantly inhibited both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression, whereas indomethacin (a cyclooxygenase inhibitor) had no effect. Together, these findings indicate that 1) hydrogen peroxide-induced c-fos mRNA expression is mediated by PLA2-dependent arachidonic acid release, 2) both PKC-dependent and independent mechanisms are involved in hydrogen peroxide-induced expression of c-fos mRNA and 3) arachidonic acid metabolism via the lipoxygenase-cytochrome P450 monooxygenase pathway appears to be required for hydrogen peroxide-induced expression of c-fos mRNA.  相似文献   

13.
14.
We quantified and compared the rates at which chloroethylclonidine (CEC) inactivated cloned rat alpha1A, alpha1B-, and alpha1D-adrenoceptors. Membranes from cells transfected with one of the three cloned alpha1-adrenoceptors were incubated for various intervals with 100 microM chloroethylclonidine at 10 degrees C, 25 degrees C or 37 degrees C. The fraction of receptors alkylated by chloroethylclonidine was determined by [3H]prazosin binding. Chloroethylclonidine fully inactivated each alpha1-adrenoceptor subtype via a first order reaction. Alkylation by chloroethylclonidine was markedly slower for the alpha1A-adrenoceptor vs. the other two subtypes (rate constants in 10(-3) min(-1) at 10 degrees C: 0.99 +/- 0.01 (alpha1A), 7.26 +/- 0.15 (alpha1B), and 7.01 +/- 0.12 (alpha1D)). Despite differences in rate, activation energies for alkylation were similar among subtypes. suggesting a similar binding sites for chloroethylclonidine. Computer simulations of kinetic data in mixed receptor populations and experiments with membranes from rat brain showed that nonlinear curve fitting could distinguish relative proportions of alpha1A-adrenoceptor vs. the other two subtypes. We conclude that measurement of the rate of alkylation by chloroethylclonidine, rather than the total amount of alkylation, is most useful in distinguishing the relative proportion of alpha1A-adrenoceptor in tissues.  相似文献   

15.
16.
Papaverine (0.3-100 microM) more potently inhibited phenylephrine (1 microM)-induced contraction than 65 mM K+-induced contraction of the aorta, while it equally inhibited contractions induced by 65 mM K+ and carbachol (1 microM) in ileal smooth muscle. In phenylephrine-treated aorta, papaverine (1-10 microM) increased the cAMP and cGMP content. However, in carbachol-treated ileum, 30 microM papaverine partially increased the cAMP content while it maximally relaxed the preparation. In fura2-loaded aorta, papaverine (0.3-10 microM) inhibited both the contraction and the increase in intracellular Ca2+ level ([Ca2+]i) induced by phenylephrine in parallel. However, papaverine inhibited carbachol-induced contraction with only a small decrease in [Ca2+]i. Papaverine (1-30 microM) inhibited the carbachol-induced increase in oxidized flavoproteins, an indicator of increased mitochondrial oxidative phosphorylation, in ileal smooth muscle whereas it did not change the phenylephrine-induced increase in the aorta. These results suggest that papaverine inhibits smooth muscle contraction mainly by the accumulation of cAMP and/or cGMP due to the inhibition of phosphodiesterase in the aorta whereas, in ileal smooth muscle, papaverine inhibits smooth muscle contraction mainly by the inhibition of mitochondrial respiration.  相似文献   

17.
In anesthetized rats intracerebroventricular (i. c. v.) injection of cholinergic agonist carbachol induced significant natriuresis, kaliuresis and diuresis (P < 0.05). Among them, the degree of natriuresis was changed with carbachol in a dose-dependent manner (r = 0.9997, P < 0.05). These responses were completely blocked by cholinergic M receptor antagonist atropine or N receptor antagonist hexamethonium pretreatment. Such effects of carbachol were inhibited in part by pretreatment with adrenergic alpha receptor antagonist phentolamine. These results indicate that the natriuresis, kaliuresis and diuresis induced by i. c. v. injection of carbachol were primarily mediated by both muscarinic and nicotinic receptors in the brain, while the effect was in part mediated secondarily via adrenergic alpha receptor.  相似文献   

18.
19.
Thyroid hormones influence growth and differentiation of bone cells. In vivo and in vitro data indicate their importance for development and maintenance of the skeleton. Triiodothyronine (T3) inhibits proliferation and accelerates differentiation of osteoblasts. We studied the regulatory effect of T3 on markers of proliferation as well as on specific markers of the osteoblastic phenotype in cultured MC3T3-E1 cells at different time points. In parallel to the inhibitory effect on proliferation, T3 down-regulated histone H4 mRNA expression. Early genes (c-fos/c-jun) are highly expressed in proliferating cells and are down-regulated when the cells switch to differentiation. When MC3T3-E1 cells are cultured under serum-free conditions, basal c-fos/c-jun expressions are nearly undetectable. Under these conditions, c-fos/c-jun mRNAs can be stimulated by EGF, the effect of which is attenuated to about 46% by T3. In addition, T3 stimulated the expression at the mRNA and protein level of osteocalcin, a marker of mature osteoblasts and alkaline phosphatase activity. All these effects were more pronounced when cells were cultured for more than 6 days. These data indicate that T3 acts as a differentiation factor in osteoblasts by influencing the expression of cell cycle-regulated, of cell growth-regulated, and of phenotypic genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号