首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the frame of the activities related to ITER divertor R&D, ENEA C.R. Brasimone was in charge by Fusion For Energy (F4E) to perform the assembly, the hydraulic tests and the theoretical simulation of the hydraulic behavior of the full scale divertor cassette prototype. The objective of these activities was aimed at the investigation of the thermal-hydraulic behavior of the full-scale divertor cassette both under steady state condition and during draining and drying operational transient. In particular, the steady state tests were focused on finally check whether the hydraulic design of the divertor components is able to ensure a uniform and proper cooling for the plasma facing components, with an acceptable pressure drop; whilst the transient ones were aimed at defining proper procedures for draining and drying the divertor cassette as well as for refilling it with water.This paper presents the results of the steady state and transient hydraulic experimental test campaigns performed at ENEA C.R. Brasimone as well as the relevant numerical analysis performed at the Department of Nuclear Engineering of the University of Palermo adopting the RELAP5 Mod3.3 thermal-hydraulic system code.  相似文献   

2.
更准确地模拟球床式高温气冷堆堆芯温度分布,是反应堆安全分析尤其是超高温运行研究中的关键问题之一。由于堆芯球流运动具有不确定性,石墨块和碳砖等结构材料采用散体布置,堆内冷却剂流道复杂,对热工水力准确模拟造成困难,可进一步优化。本文结合HTR 10的结构特点和流道特征,简要分析了堆芯传热过程,说明了在热工模拟中准确划分结构和流道对获取更精确的堆芯温度分布的重要意义。详细梳理了冷却剂流动路径,改进了在THERMIX程序下建立的HTR 10原有热工分析模型,更合理地模拟了堆芯冷却剂漏流行为,使得模型对堆芯冷却剂流动和传热过程的描述更准确。与试验数据对比,改进后的模型对堆芯外围系统的温度分布模拟准确性显著提升。计算结果表明,反应堆在额定设计工况下满功率稳态运行时,燃料和反射层最高温度均未超过材料的耐热限值。  相似文献   

3.
本文基于我国聚变工程实验堆水冷包层优化设计与安全分析的要求,针对水冷包层模块第一壁的流动传热特性进行三维数值模拟研究。采用计算流体力学方法,建立了水冷包层模块第一壁的三维数值模型,研究流量分配的特点以及温度分布情况,分析与评估在稳态工况、瞬态工况及失流事故下的水冷包层模块第一壁传热能力。研究结果表明,不同冷却管间存在流量分配不均匀的现象;在稳态工况下,水冷包层模块第一壁具有较好的传热能力,瞬态工况下水冷包层模块能够有效地导出反应堆热量;失流事故下冷却管内温度短时间上升至系统压力下的饱和温度,有待进一步研究。相关研究为优化包层第一壁传热设计提供参考,并为今后聚变堆的安全分析提供依据。  相似文献   

4.
An analytical study for the International Thermonuclear Experimental Reactor Thermal Hydraulic Analysis code (ITERTHA) is carried out for a copper divertor with a 5 mm tungsten tile. The influence of the incident heat flux, swirl-tape insertion in cooling channels as well as the coolant flow velocity on the divertor thermal response is analyzed and discussed. The ITERTHA code results are verified by the commercial finite element code, COSMOS. The heat transfer coefficients at the nodes located on the cooling channel-wall are determined outside COSMOS code by the same methodology used in ITERTHA. A good agreement is achieved under different incident heat fluxes. The ITERTHA code is also benchmarked against the thermal-hydraulic calculation of the outer divertor of the Fusion Ignition Research Experiment, FIRE for an incident heat flux of 20 MW/m2 and coolant flow velocity of 10 m/s in a cooling channel of 8 mm diameter with swirl-tape inserts of 2 ratio and 1.5 mm thickness. The results show excellent agreement for both steady and transient states and prove the successful implementation of both the hydraulic and heated diameters of the swirl-tape channels in the used heat transfer correlations.  相似文献   

5.
A full-scale ATHLET system model for the Syrian miniature neutron source reactor (MNSR) has been developed. The model represents all reactor components of primary and secondary loops with the corresponding neutronics and thermal hydraulic characteristics. Under the MNSR operation conditions of natural circulation, normal operation, step reactivity transients and reactivity insertion accidents have been simulated. The analyses indicate the capability of ATHLET to simulate MNSR dynamic and thermal hydraulic behaviour and particularly to calculate the core coolant velocity of prevailing natural circulation in presence of the strong negative reactivity feed back of coolant temperature. The predicted time distribution of reactor power, core inlet and outlet coolant temperature follow closely the measured data for the quasi steady and transient states. However, sensitivity analyses indicate the influence of pressure form loss coefficients at core inlet and outlet on the results. The analysis of reactivity accidents represented by the insertion of large reactivity, demonstrates the high inherent safety features of MNSR. Even in case of insertion of total available cold excess reactivity without scram, the high negative reactivity feedback of moderator temperature limits power excursion and avoids consequently the escalation of clad temperature to the level of onset of sub-cooled void formation. The calculated peak power in this case agrees well with the data reported in the safety analysis report. The ATHLET code had not previously been assessed under these conditions. The results of this comprehensive analysis ensure the ability of the code to test some conceptual design modifications of MNSR's cooling system aiming the improvement of core cooling conditions to increase the maximum continuous reactor operation time allowing more effective use of MNSR for irradiation purposes.  相似文献   

6.
7.
A numerical investigation into the effect of a coastdown flow on the early stage cooling of the reactor pool in Korea Advanced Liquid Metal Reactor (KALIMER)-600 during a loss of normal heat sink accident has been carried out. Based on the design values of KALIMER-600, thermal-hydraulic calculations for steady and transient states have been done using the COMMIX-1AR/P code. Coastdown flow effect was evaluated based on a transient analysis of reactors employing various flywheels, which had coastdown flow time (CDT) values ranging from 0 (without a flywheel) to 300 s. The transient analysis has been done from a reactor trip to the onset of an overflow into the DHX support barrel. It was found that the coastdown flow range could be divided into three zones, based on its effect. Among them an excessive core coolant peak temperature and a reversed flow at the core region were observed for a medium coastdown flow range. The medium ranged coastdown flow induces the development of a high density layer near the core exit. This layer contributes to the development of an adverse effect in the core coolant flow, and finally results in increasing the core peak temperature. It was also found that the initiation of heat removal by DHX could be accelerated by the increase of the CDT, although it needs a large flywheel. From this analysis the best CDT is determined to be 25 s.  相似文献   

8.
In a CANada Deuterium Uranium (CANDU) reactor, fuel channel integrity depends on the coolability of the moderator as an ultimate heat sink under transient conditions such as a loss of coolant accident (LOCA) with a coincidence of a loss of emergency core cooling (LOECC), as well as a normal operating condition. This study presents the assessments of moderator thermal–hydraulic characteristics in the normal operating condition and one transient condition for CANDU-6 reactors, using a general purpose three-dimensional computational fluid dynamics code. This study consists of two steps. First, an optimized calculation scheme is obtained by many-sided comparisons of the predicted results with the related experimental data, and by evaluating the fluid flow and temperature distributions. Then, in the second step, with the optimized scheme, the analyses for real CANDU-6 of normal operating condition and transition condition have been performed. The present model has successfully predicted the experimental results and also reasonably assessed the thermal–hydraulic characteristics of the real CANDU-6 with 380 fuel channels. Flow regime map with major parameters representing the flow pattern inside Calandria vessel has also proposed to be used as operational and/or regulatory guidelines.  相似文献   

9.
The ITER vacuum vessel has upper, equatorial and lower port structures used for equipment installation, utility feedthroughs, vacuum pumping and access inside the vessel for maintenance. A neutral beam (NB) port of equatorial ports provides a path of neutral beam for plasma heating and current drive. An internal duct liner is built in the NB ports, and copper alloy panels are placed in the top and bottom of the liner to protect duct surface from high-power heat loads. Global NB liner models for the upper panel and the lower panel have been developed, and flow field and conjugate heat transfer analyses have been performed to find out pressure drop and heat transfer characteristics of the liner. Heat loads such as NB power, volumetric heating and surface heat flux are applied in the analyses for beam steering and misalignment conditions. For the upper panel, it is found that unbalanced flow distribution occurs in each flow path, and this causes poor heat transfer performance as well. In order to improve flow distribution and to reduce pressure losses, hydraulic analyses for modified cooling path schemes have been carried out, and design recommendations are made based on the analysis results. For the lower panel, local flow distributions and pressure drop values at each header and branch of the tube are obtained by applying design coolant flow rate. Together with the coolant flow field, temperature and heat transfer coefficient distributions are also acquired from the analyses. Based on the analysis results, it is concluded that the lower panel for the NB liner is relatively well designed even though the given heat loads are very severe.  相似文献   

10.
The current work involves thermal hydraulic calculation of Lithium Lead Cooling System (LLCS) for the Indian test blanket module (TBM) for testing in International Thermonuclear Experimental reactor (ITER). It uses the RELAP portion of RELAP/SCDAPSIM/MOD4.0. Lithium-lead eutectic (LLE) has been used as multiplier, breeder and coolant in TBM. Thermodynamic and transport properties of the LLE have been incorporated into the code. The main focus of this study is to check the heat transfer capability of LLE as coolant for TBM system for steady state and the considered anticipated operational occurrences (AOO's), namely, loss of heat source, loss of primary flow and loss of secondary flow. The six heat transfer correlation (reported for liquid metals in the literature) has been tested for steady state analysis of LLCS loop and results are roughly same for all of them. A good agreement has been observed between the operating conditions of LLCS with those of RELAP5 calculations. Results from transient calculations show that a maximum temperature of 875 K is attained during a 300 s loss of primary flow (LLE).  相似文献   

11.
Actively water cooled in vessel components (IVC) are required for the long pulse operation of the stellarator Wendelstein 7-X (W7-X). In total, the cooling pipes have a length of about 4.5 km, supplying the coolant via 304 cooling circuits for the IVC. Within each cooling loop, the IVC are organized mostly in parallel. A homogeneous flow through all branches or at least the minimum specified flow in all of the branches of a circuit is crucial for the IVC to withstand the loading conditions. A detailed hydraulic simulation model of the W7-X cooling loops was built with the commercial code Flowmaster, which is a 1-D computational fluid dynamics software. In order to handle the huge amount of pipe-work data that had to be modelled, a pre- and post-processing macro was developed to transfer the 3D Catia V5 CAD model to the 1-D piping model. Within this model, the hydraulic characteristics of different types of first wall components were simulated, and compared with their pressure drop measurements. As a result of this work, the need for optimization of some cooling loops has been identified and feasible modified solutions were selected.  相似文献   

12.
Experiments investigating post-LOCA reflood generally indicate little coherence to fuel pin ballooning, and an absence of significant blockages and un-coolable regions of the core. Computational modelling is unable to predict this; the usual ‘representative pin’ models neither take into account the heterogeneity of the core, nor incorporate the dynamic coupling between the changing core geometry, and the flow paths taken by the coolant. In this paper we present a composite model, able to treat distinct pins mechanistically, and able to incorporate their (distinct) swelling behaviour into the thermal–hydraulic model of the reflood, allowing the cooling of a pin to be directly affected by the deformation of itself and its neighbours.  相似文献   

13.
Within the reactor safety programme of the EURATOM Joint Research Centre at Ispra the transient heat transfer phenomena during depressurization are experimentally investigated under PWR conditions. The special closed loop DHT-1 essentially represents one subchannel and the upper and lower plenum of a pressurized water reactor. A test series simulating rupture in the hot leg of a primary cooling circuit was carried out. Pressure and test tube temperatures were measured at various rupture cross-sections. Independently from these experiments, a blowdown computer code was developed by the Groupement Atomique Alsacienne Atlantique (GAAA). The core part of this code allows calculation of the thermohydraulic history of the coolant within the core after a rupture in the primary cooling circuit. It has been checked with regard to the hypothesis and correlations applied; the experiments and calculations are compared.  相似文献   

14.
For the validation of computational fluid dynamics (CFD) codes, experimental data on fluid flow parameters with high resolution in time and space are needed.Rossendorf Coolant Mixing Model (ROCOM) is a test facility for the investigation of coolant mixing in the primary circuit of pressurized water reactors. This facility reproduces the primary circuit of a German KONVOI-type reactor. All important details of the reactor pressure vessel are modelled at a linear scale of 1:5. The facility is characterized by flexible possibilities of operation in a wide variety of flow regimes and boundary conditions. The flow path of the coolant from the cold legs through the downcomer until the inlet into the core is equipped with high-resolution detectors, in particular, wire mesh sensors in the downcomer of the vessel with a mesh of 64 × 32 measurement positions and in the core inlet plane with one measurement position for the entry into each fuel assembly, to enable high-level CFD code validation. Two different types of experiments at the ROCOM test facility have been proposed for this purpose. The first proposal concerns the transport of a slug of hot, under-borated condensate, which has formed in the cold leg after a small break LOCA, towards the reactor core under natural circulation. The propagation of the emergency core cooling water in the test facility under natural circulation or even stagnant flow conditions should be investigated in the second type of experiment. The measured data can contribute significantly to the validation of CFD codes for complex mixing processes with high relevance for nuclear safety.  相似文献   

15.
为探究核主泵卡轴事故瞬变过程的水动力特性,通过动态匹配核主泵水力特性与系统管路阻力特性,建立了反应堆一回路系统的全三维简化模型。借助计算流体动力学(CFD)方法对核主泵卡轴事故工况进行了瞬态数值模拟,得到不同卡轴工况下核主泵外特性、内部压力场、叶轮叶片载荷与受力特性的瞬时变化。研究表明:卡轴时间越短,核主泵相应特性参数的瞬时变化越剧烈,事故造成影响越严重。以叶轮转速刚降为0 r/min时为节点,在卡轴时间为0.1、0.3、0.5 s三种卡轴工况下,流量分别降低到正常运行时的82.3%、61.4%、49.6%;核主泵扬程达到反向极值,分别为正常运行时的-137.7%、-87.4%、-56.9%;叶轮叶片两侧压力差值达到最大,分别为1.34、0.73、0.47 MPa,且在叶轮叶片工作面一侧和导叶流道中间部分形成相对集中的低压区;叶轮所受轴向力达到反向极值,分别为正常运行时的-159.3%、-96.5%、-65.5%。本数值预测方法对反应堆水动力系统的动态安全性评估提供了一定的数据支撑。  相似文献   

16.
The primary cooling system of the Tehran Research Reactor (TRR) has been analysed for a possible flow transient phenomenon caused by power cut-off. All the components of the TRR primary cooling loop that offer resistance to the coolant flow are physically modelled. Differential equations of motion for the coolant in the primary piping of the TRR and for the rotating parts of the centrifugal pump are then derived. The equation of flow motion is solved simultaneously with momentum conservation equation of the rotating parts of the pump which predicts the TRR pump speed during the flow transient. Electrical and mechanical losses are measured for the TRR three-phase induction motor in order to calculate the motor retarding torque during the event. The results of the present study are compared with the other similar primary loop results. The present model shows good agreement with the existing experimental and theoretical studies.  相似文献   

17.
One of the milestones in the roadmap of accelerator-driven transmutation of waste (ATW) of the U.S. Department of Energy is the design and construction of an accelerator-driven test facility (ADTF) with a thermal power of 100 MW. Analysis of the dynamic behavior of the ADTF has been carried out in the frame of a bilateral collaboration between the Forschungszentrum Karlsruhe and the Argonne National Laboratory (ANL). In the present study five different system configurations with various types of fuel and different types of coolant have been taken into consideration.In the systems with sodium as coolant, the transient behavior under the unprotected loss-of-flow scenario shows the most serious safety concern. As long as the external source is switched on, loss-of-flow will lead to an overheating of coolant, cladding and fuel. Boiling of coolant, cladding failure and molten fuel injection take place just in several seconds after the coast-down of the pump. Safety measures have to be designed for switching off the proton beam.In the system with liquid lead–bismuth eutectic (LBE) as coolant, the buoyancy effect is much stronger. Due to its high boiling point, coolant boiling and, subsequently, flow oscillation in fuel assemblies can be avoided. By a proper design of the heat removal system, the buoyancy-driven convection would provide a sufficiently high cooling capability of the reactor core, to keep the integrity of the fuel pins.  相似文献   

18.
Downcomer boiling phenomena in a conventional pressurized water reactor has an important effect on the transient behavior of a postulated large-break LOCA (LBLOCA), because it can degrade the hydraulic head of the coolant in the downcomer and consequently affect the reflood flow rate for a core cooling. To investigate the thermal hydraulic behavior in the downcomer region, a test program for a downcomer boiling (DOBO) is being progressed for the reflood phase of a postulated LBLOCA. Test facility was designed as a one side heated rectangular channel which adopts a full-pressure, full-height, and full-size downcomer-gap approach, but with the circumferential length reduced 47.08-fold. The test was performed by dividing it into two-phases: (I) visual observation and acquisition of the global two-phase flow parameters and (II(a)) measurement of the local bubble flow parameters on the measuring planes along five elevations. In the present paper, the test results of Phase-I and a part of Phase-II(a) were introduced.  相似文献   

19.
There are a few transient and loss-of-coolant accident conditions in RBMK-1500 reactors that lead to a local flow decrease in fuel channels. Because the coolant flow decreases in fuel channels (FC) leads to overheating of fuel claddings and pressure tube walls, mitigation measures are necessary. The accident analysis enabled the suggestion of the new early reactor scram actuation and emergency core cooling system (ECCS) initiation signal, which ensures the safe shutdown of the reactor and compensates the stagnation flow. Analysis of such conditions is presented in this paper. Thermal-hydraulic analysis was conducted using the state-of-the-art RELAP5 code. Results of the analysis demonstrated that, after implementation of the developed management strategy for destruction of local flow stagnation, the Ignalina nuclear power plant (NPP) would be adequately protected following accidents, leading to local coolant flow decrease in the primary circuit.  相似文献   

20.
High quality for primary coolant pipes in fast reactors is ensured through utmost care taken in the design and manufacture. Demonstration of high structural reliability of them by extensive experimental and theoretical studies renders the double-ended guillotine rupture (DEGR) of a primary pipe a highly improbable event. However, as a defense in depth approach instantaneous DEGR of one of the pipes has been considered in design. Thermal hydraulic analyses of this event in a typical liquid metal cooled fast breeder have been carried out to study its consequences and to establish the availability of safety margins. Various uncertainties relevant to the event have been analysed to evaluate the sensitivity of each parameter. For this purpose, one-dimensional plant dynamics studies using thermal and hydraulic models of core subassemblies and primary sodium circuit have been performed. Validity of the assumptions made in the one-dimensional model like, uniform flow through all subassemblies in core under pipe ruptured condition and non possibility of sodium boiling by flashing have also been investigated through detailed three-dimensional and pressure transient studies. Analyses indicate the availability of good margins against the design safety limits in all the parametric cases analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号