首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metal cations are the most common group of pollutants which significantly contribute to the pollution of aquatic systems. Among the heavy metal cations, lead, chromium, cadmium and cobalt are the most abundant cations present in wastewaters. In this work, a novel sorbent was synthesized via functionalization of chloro-mesoporous SBA-15 with 2,4- dinitrophenylhydrazine. The adsorbent was identified by various characterization techniques and then was used for adsorption of Pb(II), Cr(III), Cd(II), and Co(II). and then the response surface methodology was employed to study the influence, and interaction of different parameters. According to the results, the optimized adsorption capacity of 242.50, 214.72, 187.86, 166.46 mg/g was obtained respectively for the studied cations. furthermore, the sorption of cations was fast and the process achieve to equilibrium within 23.65, 20.31, 24.05 min for Pb(II), Cr(III), Cd(II) and within 19.88 min for Co(II). The adsorbent regenerated by a mixture of nitric acid and methanol could be recycled without losing a remarkable amount of capacity. The results analyzed with various isotherm models were best conformed to the Langmuir model.  相似文献   

2.
《Advanced Powder Technology》2020,31(9):4018-4030
This paper demonstrates functionalization of a new hybrid nanoclay for effective adsorption of chromium(VI) ions from wastewater. Halloysite nanotubes (HNTs) were functionalized by poly(amidoamine) dendritic polymers (HNTs-(DEN-NH2)) via a convergent synthetic route by carboxylic acid as a linkage. Various characterization methods confirm that poly(amidoamine) dendritic groups were effectively grafted onto the surface of HNTs that found a high specific surface area of 75 m2/g, as measured by micrometric BET analyzer. Moreover, the adsorption activity of HNTs-(DEN-NH2) for Cr(VI) was systematically investigated using a batch solution that reveals the removal efficiency of 98% for HNTs-(DEN-NH2) comparing to 23% for pristine HNTs, at optimum conditions. The enhancement of Cr(VI) removal for HNTs-(DEN-NH2) comparing to HNTs was mainly ascribed to be due to the electrostatic interaction, that was confirmed by the results of Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Moreover, regeneration studies display that HNTs-(DEN-NH2) can maintain removal Cr(VI) with high efficiency after four consecutive cycles.  相似文献   

3.
ABSTRACT

Leucaena biomass waste was used for preparation of activated carbon by chemical activation using KOH and pyrolysis in a muffle furnace at 800°C for 30 min. Leucaena activated carbon (LAC) as a sorbent material was used for removal of Cu (II) and Pb (II) ions from aqueous solutions. The present study reveals that LAC is efficient sorpent, fast kinetics, as easy to handle, and small amount of secondary sludge produced. The isotherm, kinetics, and thermodynamics of Cu (II) and Pb (II) sorptions by LAC were investigated. The isothermal data were found to be correlated with the Langmuir model better than the Freundlich model. The maximum sorption capacity (Q0) for the studied sorbent toward Pb (II) and Cu (II) was 32.18 and 7.89 mg/g, respectively. The experimental data show that the external diffusion and intra-particular diffusion are significant in the determination of the sorption. The thermodynamic parameters indicated that the sorption processes were spontaneous and endothermic in nature.  相似文献   

4.
In this study, a new Pb(II) ion-imprinted polymer (Pb(II)-IIP), which can be used for selective adsorption of Pb(II) from aqueous solutions, was successfully prepared based on the supported material of ordered mesoporous silica SBA-15 with the help of surface molecular imprinting technology. The prepared polymer was characterized by Fourier transmission infrared spectrometry, X-ray diffraction, transmission electron microscope and nitrogen adsorption-desorption isotherm. The results showed that the synthesized polymer possessed high ordered mesoporous structure. The adsorption behavior of the adsorbents for Pb(II) was investigated using batch experiments. The Pb(II)-IIP showed fast kinetics, high selectivity and satisfied adsorption capacity for adsorption of Pb(II). Under the optimum experimental condition, Pb(II) adsorption process over Pb(II)-IIP follows pseudo-second-order reaction kinetics and follows the Langmuir adsorption isotherm. In addition, the thermodynamic parameters calculated from the adsorption data suggested that the adsorption of Pb(II) onto Pb(II)-IIP was a spontaneous and exothermic nature of the process.  相似文献   

5.
ABSTRACT

The removal of Basic Yellow 2 (BY2), a cationic dye, from aqueous solution by using montmorillonite as adsorbent was studied in batch experiments. The effect of pH, agitation speed, adsorbent dosage, initial dye concentration ionic strength, and temperature on the removal of BY2 was also investigated. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherms were applied to fit the adsorption data of BY2 dye. Equilibrium data were well described by the typical Langmuir adsorption isotherm. The maximum monolayer adsorption capacity was calculated as 434.196 mg g?1 from the Langmuir isotherm model. The adsorption data was fitted to both the pseudo-first-order, pseudo-second-order, Elovich, and intraparticle kinetic models, and the calculated values of the amount adsorbed at equilibrium (qe) by pseudo-second-order equations were found to be in good agreement with the experimental values. The thermodynamic factors were also evaluated. The entropy change (ΔS*) was negative, suggesting that the adsorption process decreases in entropy and enthalpy change (ΔH*) was positive which indicates endothermic nature. The positive ΔG* value confirms the un-spontaneity of the process. In addition, a semiempirical model was calculated from kinetic data.  相似文献   

6.
Arsenite (As(III)) and arsenate (As(V)) removal by direct contact membrane distillation (DCMD) were investigated with self-made polyvinylidene fluoride (PVDF) membranes in the present work. Permeability and ion rejection efficiency of the membrane were tested before the arsenic removal experiments. A maximum permeate flux 20.90 kg/m(2)h was obtained, and due to the hydrophobic property, the PVDF membrane had high rejection of inorganic anions and cations which was independent of the solution pH and the temperature. The experimental results indicated that DCMD process had higher removal efficiency of arsenic than pressure-driven membrane processes, especially for high-concentration arsenic and arsenite removal. The experimental results indicated that the permeate As(III) and As(V) were under the maximum contaminant limit (10 microg/L) until the feed As(III) and As(V) achieved 40 and 2000 mg/L, respectively. The 250 h simultaneous DCMD performance of 0.5mg/L As(III) and As(V) solution was carried out, respectively. The permeate arsenic was not detected during the process which showed the PVDF membrane had stable arsenic removal efficiency. Membrane morphology changed slightly after the experiments, however, the permeability and the ion rejection of the membrane did not change.  相似文献   

7.
The biosorption characteristics of Cd(II) ions using the red alga (Ceramium virgatum) were investigated. Experimental parameters affecting the biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherms. The biosorption capacity of C. virgatum biomass for Cd(II) ions was found to be 39.7 mg/g. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol, indicating that the biosorption of Cd(II) the metal ions was taken place by chemisorption. The calculated thermodynamic parameters (DeltaG degrees , DeltaH degrees and DeltaS degrees ) showed that the biosorption of Cd(II) ions onto C. virgatum was feasible, spontaneous and exothermic at 293-323 K. Evaluation of experimental data in terms of biosorption kinetics showed that the biosorption of Cd(II) C. virgatum followed well pseudo-second-order kinetics.  相似文献   

8.
The biosorption of lead(II), cadmium(II) and nickel(II) ions from aqueous solution by Spirulina platensis was studied as a function of time, concentration, temperature, repetitive reactivity, and ionic competition. The kinetic results obeyed well the pseudo second-order model. Freundlich, Dubinin Radushkevich and Temkin isotherm models were applied in describing the equilibrium partition of the ions. Freundlich isotherm was applied to describe the design of a single-stage batch sorption system. According to the thermodynamic parameters such as DeltaG degrees, DeltaH degrees and DeltaS degrees calculated, the sorption process was endothermic and largely driven towards the products. Sorption activities in a three metal ion system were studied which indicated that there is a relative selectivity of the biosorbent towards Pb2+ ions. The measurements of the repetitive reusability of S. platensis indicated a large capacity towards the three metal ions.  相似文献   

9.
Mesoporous materials, especially functionalized ones, have become a promising carrier for enzyme immobilization. We synthesized room temperature ionic liquid-decorated mesoporous SBA-15 (RTIL-SBA-15) for papain immobilization. The results of powder XRD, IR and N2 adsorption-desorption isotherms have confirmed that ionic liquid [Simim+][Cl] was successfully grafted on the surface of SBA-15. As a consequence of the electrostatic attraction between the cation [Simim+] and the negatively charged papain, RTIL-SBA-15 had an advantage over SBA-15 when papain was immobilized at pH = 9.00. The kinetic study showed that the interaction between papain and the carrier was stronger after ionic liquid modification. In the casein hydrolysis, the papain immobilized on RTIL-SBA-15 showed a higher specific activity than that on SBA-15, implying that the ionic liquid [Simim+][Cl] was beneficial to improve the activity of the immobilized papain. The optimum pH of the immobilized papain was shifted to higher than that of free enzyme.  相似文献   

10.
In the present study, hexagonal mesoporous silica (HMS) was synthesized and modified by tannic acid as a natural poly-phenol and amine (TA-A-HMS) and was applied for the adsorption of bovine serum albumin (BSA) from aqueous media. To investigate the structure of HMS and TA-A-HMS, SEM, TEM, XRD, BET and FTIR analysis were applied. The effects of pH, adsorbent dosage, contact time and temperature on the BSA adsorption were studied. After modification, BET surface area of HMS was reduced from 885?m2/g to 51?m2/g which confirms the presence of tannin and amine groups that inhibit the adsorption of nitrogen molecules. According to the results of equilibrium data, it is shown that Langmuir isotherm with maximum adsorption capacity of 1000?mg/g is the predominant model and adsorption is mono-layer. Kinetic and thermodynamic studies also reveal that adsorption kinetic followed by pseudo-second order model and the adsorption process is exothermic.  相似文献   

11.
《Advanced Powder Technology》2020,31(9):3724-3735
In this investigation, the efficiency of Codium vermilara for copper ions removal from aqueous solution was studied. Central Composite Design has been used for the Response Surface Methodology and has been found to be an effective method for investigating the influences of various variables and their interactions on the efficiency of Cu2+ ions removal. The interactive impacts of four variables: algal dose, pH, initial concentrations of copper and contact time on the copper removal efficiency were assessed. Algal dose 0.75 g/L, pH 5.28, contact time 70.51 min, and copper concentration 48.75 mg/L were found to be the conditions of optimum biosorption. The efficiency of copper removal was found to be 85.5% under these optimum conditions. Copper removal on the biomass of C. vermilara followed well the kinetics of pseudo-first-order, Elvoish and Intraparticle diffusion. Compared to the other models, Dubinin-Radushkevich isotherm best suited the experimental data revealing that the adsorption mechanism was physical adsorption. Thermodynamic parameters exhibited non-spontaneous, randomness and endothermic biosorption of Cu2+ ions. Additionally, the biosorbent characterization was estimated by scanning electron microscopy and Fourier transform infrared analysis. Thus, C. vermilara could be used as possible biosorbent for removing heavy metals and other pollutants from the environment.  相似文献   

12.
The adsorption of Pb(II) onto Turkish (Bandirma region) kaolinite clay was examined in aqueous solution with respect to the pH, adsorbent dosage, contact time, and temperature. The linear Langmuir and Freundlich models were applied to describe equilibrium isotherms and both models fitted well. The monolayer adsorption capacity was found as 31.75 mg/g at pH 5 and 20 degrees C. Dubinin-Radushkevich (D-R) isotherm model was also applied to the equilibrium data. The mean free energy of adsorption (13.78 kJ/mol) indicated that the adsorption of Pb(II) onto kaolinite clay may be carried out via chemical ion-exchange mechanism. Thermodynamic parameters, free energy (deltaG degrees ), enthalpy (deltaH degrees ) and entropy (deltaS degrees ) of adsorption were also calculated. These parameters showed that the adsorption of Pb(II) onto kaolinite clay was feasible, spontaneous and exothermic process in nature. Furthermore, the Lagergren-first-order, pseudo-second-order and the intraparticle diffusion models were used to describe the kinetic data. The experimental data fitted well the pseudo-second-order kinetics.  相似文献   

13.
This study discusses about the biosorption of Cr(VI) ion from aqueous solution using ultrasonic assisted Spirulina platensis (UASP). The prepared UASP biosorbent was characterised by Fourier transform infrared spectroscopy, X‐ray diffraction, Brunauer–Emmet–Teller, scanning electron spectroscopy and energy dispersive X‐ray and thermogravimetric analyses. The optimum condition for the maximum removal of Cr(VI) ions for an initial concentration of 50 mg/l by UASP was measured as: adsorbent dose of 1 g/l, pH of 3.0, contact time of 30 min and temperature of 303 K. Adsorption isotherm, kinetics and thermodynamic parameters were calculated. Freundlich model provided the best results for the removal of Cr(VI) ions by UASP. The adsorption kinetics of Cr(VI) ions onto UASP showed that the pseudo‐first‐order model was well in line with the experimental data. In the thermodynamic study, the parameters like Gibb''s free energy, enthalpy and entropy changes were evaluated. This result explains that the adsorption of Cr(VI) ions onto the UASP was exothermic and spontaneous in nature. Desorption of the biosorbent was done using different desorbing agents in which NaOH gave the best result. The prepared material showed higher affinity for the removal of Cr(VI) ions and this may be an alternative material to the existing commercial adsorbents.Inspec keywords: adsorption, ultrasonic applications, Fourier transform infrared spectra, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, thermal analysis, chromium, free energy, enthalpy, entropy, desorption, water treatment, water pollution, biological techniques, microorganismsOther keywords: Cr4+ , entropy changes, enthalpy changes, Gibb''s free energy, pseudofirst‐order model, Freundlich model, thermogravimetric analyses, energy dispersive X‐ray, scanning electron spectroscopy, Brunauer‐Emmet‐Teller, X‐ray diffraction, Fourier transform infrared spectroscopy, UASP biosorbent, ultrasonic assisted Spirulina platensis, aqueous solution, chromium ion biosorption, thermodynamic prediction, kinetic prediction, equilibrium prediction, parameter optimisation, chromium ion removal, Spirulina platensis alga, adsorption capacity  相似文献   

14.
This study focused on the biosorption of total chromium onto red algae (Ceramium virgatum) biomass from aqueous solution. Experimental parameters affecting biosorption process such as pH, contact time, biomass dosage and temperature were studied. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were applied to describe the biosorption isotherms. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The biosorption capacity of C. virgatum biomass for total chromium was found to be 26.5 mg/g at pH 1.5 and 10 g/L biomass dosage, 90 min equilibrium time and 20 °C. From the D–R isotherm model, the mean free energy was calculated as 9.7 kJ/mol, indicating that the biosorption of total chromium was taken place by chemisorption. The calculated thermodynamic parameters (ΔG°, ΔH°and ΔS°) showed that the biosorption of total chromium onto C. virgatum biomass was feasible, spontaneous and exothermic at 20–50 °C. Kinetic evaluation of experimental data showed that the biosorption processes of total chromium followed well pseudo-second-order kinetics.  相似文献   

15.
A new method using a column packed with Amberlite XAD-2010 resin as a solid-phase extractant has been developed for the multi-element preconcentration of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), and Pb(II) ions based on their complex formation with the sodium diethyldithiocarbamate (Na-DDTC) prior to flame atomic absorption spectrometric (FAAS) determinations. Metal complexes sorbed on the resin were eluted by 1 mol L(-1) HNO3 in acetone. Effects of the analytical conditions over the preconcentration yields of the metal ions, such as pH, quantity of Na-DDTC, eluent type, sample volume and flow rate, foreign ions etc. have been investigated. The limits of detection (LOD) of the analytes were found in the range 0.08-0.26 microg L(-1). The method was validated by analyzing three certified reference materials. The method has been applied for the determination of trace elements in some environmental samples.  相似文献   

16.
In this study, various activation methods have been employed to examine the potential reuse of tannery residual biomass (TRB) obtained from vegetable tanning process for the removal of Cr(VI) and Rhodamine B (RB) from aqueous solution. The maximum BET surface area (10.42 m(2)/g), honey comb pore distribution and uptake of both Cr(VI) and RB were achieved when only 3-fold volume of HCl was used to activate the biomass. The pH and temperature experiment showed that they have considerable impact on the adsorption capacity of the used adsorbent. The presence of other ions (Na(+), Ca(2+) and NH(4)(+)) significantly reduces the metal uptake but marginal enhancement in the dye removal was observed when Na(+) and NH(4)(+) ions were present in the solution. The equilibrium data fitted satisfactorily with the Langmuir model and monolayer sorption capacity obtained as 177-217 and 213-250 mg/g for Cr(VI) and RB at 30-50°C, respectively. The sorption kinetics was found to follow the pseudo-second-order kinetic model. The increase in adsorption capacity for both metal and dye with increase in temperature indicates that the uptake was endothermic in nature. The results indicate that the HCl modified TRB (A-TRB) could be employed as a low cost adsorbent for the removal of both Cr(VI) and RB from the aqueous solution including industrial wastewater.  相似文献   

17.
Endocrine disruptive compounds (EDC) are a wide variety of chemicals which typically exert effects, either directly or indirectly, through receptor-mediated processes. They mimic endogenous hormones by influencing the activities of hormone activities even at nanogram concentrations and reported to disrupt the vital systems (e.g., the endocrine system) in aquatic organisms. The EDC are present in aquatic water bodies and sediments mainly due to the release of human and animal excreted waste. Estriol (E3) removal by adsorption process was investigated in this study to evaluate the potential of activated charcoal as adsorbent. Agitated non-flow batch sorption studies showed good E3 removal efficiency. Sorption kinetic data illustrated good fit with pseudo-first-order rate equation. Experimental data confirmed to linear Langmuir's isotherm model. Neutral pH condition showed comparatively good sorption of E3. Adsorption capacity showed a consistent increasing trend with increase in the operating temperature [DeltaH degrees , -9.189 kJ/mol); DeltaS degrees , 0.492 J/mol K) suggesting exothermic nature of E3 sorption process. Free energy (DeltaG degrees ) increased from 2.51 to 2.97 kJ/mol with increase in temperature from 0 to 50 degrees C. Further, E3 spiked distilled water, untreated domestic sewage and treated domestic sewage were studied in fixed bed column to assesses the potential of sorption process as tertiary unit operation in the ETP system. Total E3 concentration was determined quantitatively by employing direct competitive enzymatic-immuno assay (EIA) procedure.  相似文献   

18.
Pomegranate husk was converted into activated carbon and tested for its ability to remove hexavalent chromium from wastewater. The new activated carbon was obtained from pomegranate husk by dehydration process using concentrated sulfuric acid. The important parameters for the adsorption process such as pH, metal concentration and sorbent weight were investigated. Batch equilibrium experiments exhibited that a maximum chromium uptake was obtained at pH 1.0. The maximum adsorption capacity for pomegranate husk activated carbon was 35.2mgg(-1) as calculated by Langmuir model. The ability of activated carbon to remove chromium from synthetic sea water, natural sea water and wastewater was investigated as well. Different isotherm models were used to analyze the experimental data and the models parameters were evaluated. This study showed that the removal of toxic chromium by activated carbon developed from pomegranate husk is a promising technique.  相似文献   

19.
A new method for the preconcentration of some trace metals (Co, Ni, Cu, and Cd) as complexed with ammonium pyrrolidynedithiocarbamate (APDC) was developed using a mini-column filled with Amberlite XAD-2000 resin. Metal contents were determined by flame atomic absorption spectrometry (FAAS) after the metal complexes accumulated on the resin were eluted with 1M HNO(3) in acetone. The effects of the analytical parameters such as sample pH, quantity of complexing agent, eluent type, resin quantity, sample volume, sample flow rate, and matrix ions were investigated on the recovery of the metals from aqueous solutions. The relative standard deviation (R.S.D.) of the method was <6%. The validation of the method was confirmed using two certified reference materials (CRM TMDW-500 Drinking Water and CRM SA-C Sandy Soil C). The method was successfully applied to some stream waters and mushroom samples from Eastern Black Sea Region (Trabzon city) of Turkey.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号