首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ti3AlC2/Al2O3 nanopowders were synthesized by the combination of mechanically-induce self-propagating reaction (MSR) of Ti, C, Al and TiO2 powder mixtures and subsequently heat treatment. Effects of high energy milling and heat treatment temperatures on the phase transformation were investigated in detail. X-ray diffraction (XRD) was used to characterize the powders of milled and annealed, respectively. The morphology and microstructure of as fabricated products were also studied by scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS). Results show that TiC, TixAly and Al2O3 transitional phases were formed when the initial powder mixtures were milled for 24 h. The desired Ti3AlC2/Al2O3 nanopowders with high purity were obtained when annealed the as-milled powders at 1100 °C. SEM image confirmed that the as fabricated Ti3AlC2/Al2O3 particles has nanocrystalline layered structural matrix of Ti3AlC2, and the second phase of nanosized Al2O3 disperses uniformly in the Ti3AlC2 matrix.  相似文献   

2.
In the present work, in situ TiN/Ti5Si3 nanocomposite powder was prepared by high‐energy mechanical alloying of a Ti and Si3N4 powder mixture via the following route: 9Ti + Si3N4 = Ti5Si3 + 4TiN. Constitution phases and microstructural features of the milled powders at different milling times were studied by XRD, SEM, and TEM. The operative formation mechanisms behind the microstructural developments were disclosed. It showed that the original Si3N4 and Ti constituents demonstrated two different reaction mechanisms during milling, i.e., a progressive mechanism of Si3N4 (≤20 h) and a speedy mechanism of Ti (≤10 h). The morphologies of the milled composite powders experienced a successive change: pre‐refining – coarsening – re‐refining on increasing the applied milling time. The variation of the operative mechanisms was ascribed to the existence/exhaustion of the ductile Ti constituent in the milling system due to the nonoccurrence/initiation of the in situ reaction. The 20 h milled powder was the typical nanocomposites featured by the nanocrystalline Ti5Si3 matrix reinforced with in situ TiN nanoparticles. The grain sizes of the in situ formed Ti5Si3 and TiN phases were generally ≤15 nm, exhibiting coherent interfacial structure between reinforcement and matrix.  相似文献   

3.
Ti3AlC2/Al2O3 nanocomposite powder was synthesized by mechanical-activation-assisted combustion synthesis of TiO2, Al and C powder mixtures. The effect of mechanical activation time of 3TiO2-5Al-2C powder mixtures, via high energy planetary milling (up to 20?h), on the phase transformation after combustion synthesis was experimentally investigated. X-ray diffraction (XRD) was used to characterize as-milled and thermally treated powder mixtures. The morphology and microstructure of as-fabricated products were also studied by scanning electron microscopy (SEM) and field-emission gun electron microscopy (FESEM). The experimental results showed that mechanical activation via ball-milling increased the initial extra energy of TiO2-Al-C powder mixtures, which is needed to enhance the reactivity of powder mixture and make it possible to ignite and sustain the combustion reaction to form Ti3AlC2/Al2O3 nanocomposite. TiC, AlTi and Al2O3 intermediate phases were formed when the initial 10?h milled powder mixtures were thermally treated. The desired Ti3AlC2/Al2O3 nanocomposite was synthesized after thermal treatment of 20?h milled powder and consequent combustion synthesis and FESEM result confirmed that produced powder had nanocrystalline structure.  相似文献   

4.
Two quarternary Ti-Al-Si-C powder mixtures, 55Ti-27Al-12Si-6C and 55Ti-36Al-6Si-3C, were mechanically alloyed. The as-alloyed and heated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). XRD patterns showed diffuse halos of amorphous like phase for 20-40 h milled powders, but TEM examinations demonstrated that the 40 h milled powders were mainly composed of Ti solid solutions, with some amount of amorphous phase. SEM observations displayed that the lamellar structures of Ti and Al formed at the early stage of milling process subsequently led to the formation of nano- or sub-micrometer particles of homogeneous composition after prolonged milling to 40 h. It is deduced that the solid-stated reaction by inter-diffusion of components should be responsible for phase formation during mechanical alloying. DSC curves of the 40 h milled powders exhibited two sharp exothermal peaks, and the investigation on thermal stability of the 40 h milled powders indicated that Ti5Si3 was first formed at lower temperature, followed by Al2Ti4C2and TiC at intermediate temperature (820°C), and these phases were stable at elevated temperatures. These results raise the possibility of synthesizing TiAl-based composite with titanium silicides and titanium carbides as reinforcements by proper selection of powder compositions.  相似文献   

5.
Many methods have been used to synthesize the Ti3AlC2 MAX phase, but obtaining high-purity (>99.0 %) Ti3AlC2 is still a challenge. In this work, nano/submicro-sized Ti3AlC2 powder was prepared using Ti/Al/C elemental powders by the molten salt method in a vacuum quartz tube system. The effects of reaction temperature and dwell time, mechanical activation, the ratio of flux to reactants, and the ratio of Al on the synthesis of Ti3AlC2 were systematically investigated. The results show that Ti3AlC2 powder with a high purity of up to 99.0 % was prepared using ball milled 3Ti/1.1Al/2C mixture as the reaction material, and NaCl-KCl as the molten salt at 1150 °C for 2 h. The reaction mechanisms of Ti3AlC2 in molten salt have been discussed.  相似文献   

6.
Ti-Al intermetallics have been produced using mechanical alloying technique. A composition of Ti-48Al-2Nb at % powders was mechanically alloyed for various durations of 20, 40, 60, 80 and 100 h. At the early stages of milling, a Ti (Al) solid solution is formed, on further milling the formation of amorphous phase occurs. Traces of TiAl and Ti3Al were formed with major Ti and Al phases after milling at 40 h and beyond. When further milled, phases of intermetallic compounds like TiAl and Ti3Al were formed after 80 hours of milling and they also found in 100 h milled powders. The powders milled for different durations were sintered at 785°C in vacuum. The mechanically alloyed powders as well as the sintered compacts were characterized by XRD, FESEM and DTA to determine the phases, crystallite size, microstructures and the influence of sintering over mechanical alloying.  相似文献   

7.
ABSTRACT

Ti50Cu50 (at.-%) alloy has been produced from elemental Ti and Cu powders by high-energy ball milling in a planetary ball mill. Structural evolution of the alloy during milling and after subsequent heat treatment have been studied. It has been stated that high-energy ball milling of the investigated powder produces two nanocrystalline solid solutions: Cu(Ti) and Ti(Cu), both characterised by the fcc (Fm-3 m) structure. The transition of Ti structure from hcp (P63/mmc) to fcc (Fm-3 m) is observed during milling. Heat treatment of the milled powder leads to recrystallisation of Cu(Ti) and Ti(Cu) solid solutions.

This paper is part of a Thematic Issue on The Crystallographic Aspects of Metallic Alloys.  相似文献   

8.
In this research a nano-composite structure containing of an intermetallic matrix with dispersed Al2O3 particles was obtained via mechanical activation of TiO2 and Al powder mixture and subsequent sintering. The mixture has been milled for different lengths of time and then as a subsequent process it has been sintered. Phase evolutions in the course of milling and subsequent sintering of the milled powder mixture were investigated. Samples were characterized by XRD, SEM, DTA and TEM techniques.The results reveal that the reaction begins during milling by formation of Al2O3 and L12 Al3Ti and further milling causes partial amorphization of powder mixture. DTA results reveal that milling of the powder mixture causes solid state reaction between Al and TiO2 rather than liquid–solid reaction. Also, it was observed that the exothermicity of aluminothermic reduction is reduced by increasing the milling time and the exothermic peak shifts to lower temperatures after partial amorphization of powder mixture during milling. Phase evolutions of the milled powders after being sintered reveal that by increasing the milling time and formation of L12 Al3Ti in the milled powder, intermediate phase formed at 500 °C changes from D022 Al3Ti to Al24Ti8 phase.  相似文献   

9.
TiAl-based intermetallic matrix composites with dispersed Ti2AlC particles and different amounts of Nb were successfully synthesized by mechanical alloying and hot pressing. The phase evolution of Ti–48 at%. Al elemental powder mixture milled for different times with hexane as a process control agent was investigated. It was found that after milling for 25 h, a Ti(Al) solid solution was formed; also with increase in the milling time to 50 h, an amorphous phase was detected. Formation of a supersaturated Ti(Al) solid solution after 75 h milling was achieved by crystallization of amorphous phase. Addition of Nb to system also exhibited a supersaturated Ti(Al,Nb) solid solution after milling for 75 h, implying that the Al and Nb elements were dissolved in the Ti lattice in a non-equilibrium state. Annealing of 75 h milled powders resulted in the formation of equilibrium TiAl intermetallic with Ti2AlC phases that showed the carbon that originates from hexane, participated in the reaction to form Ti2AlC during heating. Consolidation of milled powder with different amounts of Nb was performed by hot pressing at 1000°C for 1 h. Only the presence of γ-TiAl and Ti2AlC was detected and no secondary phases were observed on the base of Nb. Displacement of γ-TiAl peaks with Nb addition implied that the Nb element was dissolved into TiAl matrix in the form of solid solution, causing the lattice tetragonality of TiAl to increase slightly. The values for density and porosity of samples indicated that condition of hot pressing process with temperature and pressure was adequate to consolidate almost fully densified samples. The isothermal oxidation test was carried out at 1000°C in air to assess the effect of Nb addition on the oxidation behaviour of TiAl/Ti2AlC composites. The oxidation resistance of composites was improved with the increase in the Nb content due to the suppression of TiO2 growth, the formation and stabilization of nitride in the oxide scale and better scale spallation resistance.  相似文献   

10.
《Advanced Powder Technology》2014,25(3):1094-1102
High-energy ball milling was applied with subsequent heat treatment for synthesizing nanoparticles of TiC powders by the carbothermic and carbosilisisothermic reduction of titanium oxide (rutile type). The milling procedure involved milling of TiO2/C and TiO2/Si/C powders at room temperature in an argon atmosphere. The progress of the mechanically induced solid state reaction was monitored using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results showed that TiC nanoparticles were duly synthesized in the TiO2/C system at 1700 °C in 60-h milled samples. In the non-milled samples, although heated at the same temperature, only a minor amount of a lower degree of titanium oxide (Ti3O5) was observed to form. Further, in other non-milled samples, but with Si initially present, despite heating to 1550 °C no TiC phase was detected. However, using Si as a reducing agent accompanied by graphite, after 60 h ball milling, only Si remained as a distinguishable crystalline phase. Further, heat treatment of activated powders by forming the interphase compounds (such as Ti3Si5 and Ti5Si3) remarkably decreased the synthesis temperature to 900 °C for the 60 h milled samples.  相似文献   

11.
The microstructure of high-temperature metals such as Ti, Ni, and Cr can be modified using ceramic nanoparticles to form metal matrix nanocomposites (MMNCs). Such materials are generally prepared via powder metallurgy routes. In this study, 25?wt% SiCnp and Al2O3np were separately ball milled as a reinforcement of Ti, Cr, and Ni matrices to investigate their effects on the phase formation and morphology of the MMNCs. The x-ray diffraction (XRD), scanning electron microscopy (SEM), and field emission scanning electron microscopy (FESEM) results indicated that the alumina–metal system could not be thermodynamically stable in a high-energy ball mill, while the SiC reinforcement could be retained and milled with the metals even after 24?h. It was further observed that the distribution of nanoparticles was not affected by the type of metal, ceramic, and milling time. Finally, it was determined that the nanoparticles significantly reduced the average particle size of composite powders.  相似文献   

12.
Ball milled Ti/BN composite powder was prepared by high energy ball milling for 40 h, using Ti and BN (the molar ratio of Ti/BN is 3:2) as starting materials. The as-milled composite powder consists of TiN, Ti and amorphous phase. TiN formed while the milled powder was annealed at 400℃. The heat treatment at 700℃ led to the formation of TiB2 and TiB. The nanocrystalline Ti and amorphous phase converted to TiN and TiB2 when the powder was heated to 1300℃.  相似文献   

13.
Ti/Sn/TiC powder mixtures were first employed to synthesize Ti2SnC powder by pressureless sintering in the temperature range of 950–1250 °C at vacuum atmosphere. Ti2SnC began to form at 950 °C, its content increased with increasing temperature. High purity of Ti2SnC was obtained by sintering the mixtures with deficient Sn and TiC at 1200 °C for 15 min. A reaction mechanism was proposed to explain the formation of Ti2SnC. The Ti2SnC powder was characterized by scan electron microscopy (SEM) and X-ray diffraction (XRD). Using the above mixtures and process, the Ti2SnC ceramic powder can be obtained on a larger scale.  相似文献   

14.
Polycrystalline Ti2AlC samples were synthesized by hot pressing of Ti, Al, TiC and active carbon powder mixtures. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used for phase identification and microstructure evaluation. No other phase except Ti2AlC was detected in samples synthesized by hot pressing of the 0.5TiC/1.5Ti/1.0Al/0.5C powder mixtures at 1400°C for 1 and 3 h under a pressure of 30 MPa. The densities of these two samples were 96.1 and 98% of the theoretical value of pure Ti2AlC, respectively. The reason that the densities of these two samples were lower than the theoretical density of pure Ti2AlC is that pore existed in these two samples. At lower temperature of 1300°C, the speed of the reaction forming Ti2AlC was slow. While at higher temperature of 1500°C, Ti2AlC transformed to Ti3AlC2. So these two temperatures are not suitable for the fabrication of Ti2AlC.  相似文献   

15.
《Advanced Powder Technology》2014,25(6):1754-1760
In this study, the B4C–TiB2–TiC composite powder was synthesized by mechanical alloying (MA) of Ti–B4C powder mixture. For this purpose, four powder mixtures of Ti and B4C powders with different molar ratios were milled. In order to study the mechanism of Ti–B4C reaction during milling, structural changes and thermal analysis of powder particles were studied by X-ray diffractometry (XRD) and differential thermal analysis (DTA). Morphology and microstructure of powder particles during milling were studied by scanning electron microscopy (SEM). It was found that during MA, after decomposition of the outer layers of B4C particles, first, C reacted with Ti and after that, B was diffused in Ti structure and TiC and TiB2 phases were formed in gradual reaction mode. Also, the results of DTA and thermodynamic analysis confirmed the suggested mechanism for Ti–B4C reaction.  相似文献   

16.
Abstract

Ternary carbide Ti3 SiC2 was first synthesised through a pulse discharge sintering (PDS) technique from mixtures of Ti, SiC, and C with different molar ratios. Sintering processes were conducted at 1200 – 1400°C for 15 – 60 min at a pressure of 50 MPa. The phase constituents and microstructures of the synthesised samples were analysed by X-ray diffraction (XRD) technique and observed by scanning electron microscopy (SEM). The results showed that, for samples sintered from 3Ti/SiC/C powder at 1200 – 1400°C, TiC is always the main phase and only little Ti3 SiC2 phase is formed. When the molar ratios Ti : SiC : C were adjusted to 3 : 1.1 : 2 and 5 : 2 : 1, the purity of Ti3 SiC2 in the synthesised samples was improved to about 93 wt-%. The optimum sintering temperature for Ti3 SiC2 samples was found to be in the range 1250 – 1300°C and all the synthesised samples contain platelike grains. The relative density of Ti3 SiC2 samples was measured to be higher than 99% at sintering temperatures above 1300?C. It is suggested that the PDS technique can rapidly synthesise ternary carbide Ti3 SiC2 with good densification at lower sintering temperature.  相似文献   

17.
The ternary phase diagram Ti-Cd-Te was investigated by using approximate thermodynamic calculations as well as experimental methods (XRD, SEM, EDX, DTA). Isothermal sections at 500 C and 600 C and a tentative liquidus surface are given. Massive Ti/CdTe diffusion couples have been used to study the reaction mechanism and the kinetics of interface reactions in cross-sections with optical microscopy and SEM/EDX and also by qualitative X-ray depth profiling. Both the phase equilibrium and diffusion study reveal that Ti forms a thermodynamically unstable contact on CdTe. The diffusion path with the reaction layer sequence Ti/Ti2Cd/Ti5Te4/Ti3Te4/CdTe indicates that local equilibria prevail in the reaction diffusion. The thermal stability of metallization structures alternative to Ti/CdTe and based on the intermediate phases in the ternary Ti-Cd-Te system is discussed.  相似文献   

18.
In this study, LaB6–Al2O3 nanocomposite powders were synthesized via ball milling-assisted annealing process starting from La2O3–B2O3–Al powder blends. High-energy ball milling was conducted at various durations (0, 3, 6 and 9 h). Then, the milled powders were annealed at 1200 °C for 3 h under Ar atmosphere in order to obtain LaB6 and Al2O3 phases as reaction products. X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM) techniques were utilized to carry out microstructural characterization of the powders. No reaction between the reactants was observed in the XRD patterns of the milled powders, indicating that high-energy ball milling did not trigger any chemical reactions even after milling for 9 h. LaAlO3 and LaBO3 phases existed in the annealed powders which were milled for 0, 3 and 6 h. LaBO3 phase was removed after HCl leaching. 9-h milled and annealed powders did not exhibit any undesired phases such as LaAlO3 and LaBO3 after leaching step, and pure nanocrystalline LaB6–Al2O3 composite powders were successfully obtained. TEM analyses revealed that very fine LaB6 particles (~?100 nm) were embedded in coarse Al2O3 (~?500 nm) particles.  相似文献   

19.
《Advanced Powder Technology》2020,31(5):1789-1795
Titanium carbohydride-based composites were produced by one-, two- and three-stage ball milling of titanium-copper powder mixture in liquid hydrocarbon and subsequent annealing at 600 °C for 1 h in argon. The phase composition and morphology of the milled and annealed powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Single-stage milling of titanium-copper mixture followed by its annealing was shown to result in the formation of the titanium carbohydride and intermetallic phases which may deteriorate the composite properties because of their high brittleness. Addition of copper at the second stage of the two-stage milling lowered the fraction of intermetallic phases. Octadecylamine added as a surfactant in the three-stage ball milling aided to prevent the formation of intermetallic phases under both milling and subsequent annealing owing to the formation of a barrier adsorption layer on the particle surface.  相似文献   

20.
In this research, NixTiy compound was prepared by thermal treatment of Ni-plated Ti powder. For this purpose, Ti powder was plated in an electroless Ni bath for various times (120, 225, 300, and 720?min). Hydrazine hydrate was used as a reductant for the deposition of pure Ni on the Ti particles. The plated powder (225?min) was heat treated under argon atmosphere to achieve NixTiy powder. Finally, the heated/plated powder was pressed by CIP followed by sintering at 980°C for prepare the NixTiy bulk sample. The plated powders as well as sintered one were characterized using scanning electron microscopy, energy dispersive spectrometer, X-ray fluorescence, X-ray diffraction and differential scanning calorimetric. The NiTi2, NiTi, and Ni3Ti phases were detected in the XRD patterns of heated/plated Ti powder. According to DSC data, the heated/plated Ti powder showed reversible martensitic transformation at temperature range of ?38.0°C to +38.1°C, while sintered/heated/plated Ti powder displayed reversible transformation at temperature range of 16.0°C–15.4°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号