共查询到2条相似文献,搜索用时 0 毫秒
1.
Huaxiang Yan Jiawei Wu Hywel R. Thomas Hao Ding Liangtong Zhan Haijian Xie 《Geotextiles and Geomembranes》2021,49(2):489-499
A triple-layer composite liner consisting of a geomembrane liner (GMB), a geosynthetic clay liner (GCL) and a compacted clay liner (CCL) is commonly used at the landfill bottom liner system to isolate the contaminated leachates. In this paper, one-dimensional quasi-steady-state small deformation model (SDSS) was developed to investigate the behavior of organic chemicals transport in landfill composite liner system considering coupled effect of consolidation, diffusion and degradation. The first and second type bottom boundary conditions are used to derive the analytical solutions. The generalized integral transform technique (GITT) is adopted to derive the analytical solutions. The effect of consolidation on the performance of GMB/GCL/CCL with intact or leaking GMB is investigated. The triple liner under double drainage boundary condition (DDBC) has better performance compared to the case under single drainage boundary condition (SDBC). This is because the velocity induced by consolidation under DDBC is lower than that under SDBC. The effect of GCL consolidation shows an opposite trend compared to CCL consolidation. Considering GCL consolidation can increase the breakthrough time. The effective diffusion coefficient of GCL can be two magnitude orders smaller after consolidation, which provides a better diffusion barrier for the chemical transport. The effects of adsorption and degradation have been analyzed as well. Increasing the adsorption capacity of a deforming composite liner can increase the steady-state bottom flux, which shows the opposite tendency compared to the case without considering consolidation. This is due to the fact that for the case of a deforming composite liner, the advection induced by consolidation includes a new term due to the solid velocity. This velocity will result in the increase the mass of chemical migration through the composite liner. 相似文献
2.
In municipal solid waste landfills, a triple-layer composite liner consisting of a geomembrane liner (GML), a geosynthetic clay liner (GCL) and a compacted clay liner (CCL) is commonly used at the landfill bottom to isolate the leachates from surrounding environment. This paper presents a numerical investigation of the effect of liner consolidation on the transport of a volatile organic compound (VOC), trichloroethylene (TCE), through the GML/GCL/CCL composite liner system. The numerical simulations were performed using the model CST3, which is a piecewise linear numerical model for coupled consolidation and solute transport in multi-layered soil media and has been extensively validated using analytical solutions, numerical solutions and experimental results. The performed numerical simulations considered coupled consolidation and contaminant transport with representative geometry, material properties, and applied stress conditions for a GML/GCL/CCL liner system. The simulation results indicate that, depending on conditions, consolidation of the GCL and CCL can have significant impact on the transport results of TCE (i.e., TCE mass flux, cumulative TCE mass outflow, and distribution of TCE concentration within the GCL and CCL), both during the consolidation process and long after the completion of consolidation. The traditional approach for the assessment of liner performance neglects consolidation of the GCL and CCL and fails to consider the consolidation-induced transient advection and concurrent changes in material properties and, therefore, can lead to significantly different results. These differences for with and without the consolidation effects can range over several orders of magnitude. The process of consolidation-induced contaminant transport is complex and involves many variables, and therefore case-specific analysis is necessary to assess the significance of liner consolidation on VOC transport through a GML/GCL/CCL composite liner system. 相似文献