首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nextel 610 fibre-reinforced mullite-based matrix fabricated by Dornier Forschung was characterised at DLR Institute of Materials Research. The material was produced by the polymer route after coating the fibres with a 0.1 μm thick carbon layer. The composite was manufactured by infiltrating the fibres with a slurry containing a diluted polymer and mullite powder, curing in an autoclave and subsequently heat treating and pyrolysis of the polymer. A final heat treatment in air is performed to remove the carbon coating and to reduce the residual stresses. A (0/90/0/90/0/90)s-laminate was produced with an average fibre volume fraction of 45.6% and a porosity of 15.9%. Dog-bone-type tensile specimens with a width of 10 mm were cut from the plate by water jet and tested at temperatures up to 1200°C in air. The tensile strength at room temperature measured 177.4 MPa and linearly decreased to 145.2 MPa at a temperature of 800°C. A stronger decrease occurred at 1000 and 1200°C. In contradiction to ceramic matrix composites manufactured by the CVI-route the stress–strain behaviour is nearly linear up to failure. The modulus of the composite (at room temperature 108.8 GPa) is analysed on the basis of the expected moduli of the fibres and the mullite matrix. It can be concluded that the contribution of the matrix to the modulus of the composite is low, caused by porosity and components other than mullite. The intralaminar shear strength at room temperature measured 36 MPa. This value reflecting shear transfer capability of fibre to matrix limits the amount of fibre pull-out.  相似文献   

2.
The microstructure and elevated temperature mechanical properties of continuous carbon fibre reinforced ZrC and TaC composites were investigated. Silicon carbide was added to both compositions to aid sintering during hot pressing. Fibres were homogeneously distributed and no fibre degradation was observed at the interface with the ceramic matrix even after testing at 2100 °C. The flexural strength increased from 260 to 300 MPa at room temperature to ∼450 MPa at 1500 °C, which was attributed to stress relaxation. At 1800 °C, the strength decreased to ∼410 MPa for both samples. At 2100 °C plastic deformation resulted in lower strength at the proportional limit (210–320 MPa), but relatively high ultimate strength (370–440 MPa). The sample containing ZrC had a lower ultimate strength, but higher failure strain at 2100 °C due to the weak fibre/matrix interface that resulted in fibre-dominated composite behaviour.  相似文献   

3.
Ti matrix composites reinforced with 0.6?wt% reduced graphene oxide (rGO) sheets were fabricated using spark plasma sintering (SPS) technology at different sintering temperatures from 800?°C to 1100?°C. Effects of SPS sintering temperature on microstructural evolution and mechanical properties of rGO/Ti composites were studied. Results showed that with an increase in the sintering temperature, the relative density and densification of the composites were improved. The Ti grains were apparently refined owing to the presence of rGO. The optimum sintering temperature was found to be 1000?°C with a duration of 5?min under a pressure of 45?MPa in vacuum, and the structure of rGO was retained. At the same time, the reaction between Ti matrix and rGO at such high sintering temperatures resulted in uniform distribution of micro/nano TiC particle inside the rGO/Ti composites. The sintered rGO/Ti composites exhibited the best mechanical properties at the sintering temperature of 1000?°C, obtaining the values of micro-hardness, ultimate tensile strength, 0.2% yield strength of 224 HV, 535?MPa and 446?MPa, respectively. These are much higher than the composites sintered at the temperature of 900?°C. The fracture mode of the composites was found to change from a predominate trans-granular mode at low sintering temperatures to a ductile fracture mode with quasi-cleavage at higher temperatures, which is consistent with the theoretical calculations.  相似文献   

4.
Geopolymer composites reinforced with refractory, chopped basalt fibers, and low melting glass were fabricated and heat treated at higher temperatures. K2O·Al2O3·4SiO2·11H2O was the stoichiometric composition of the potassium-based geopolymer which was produced from water glass (fumed silica, deionized water, potassium hydroxide), and metakaolin. Addition of low melting glass (Tm ~815°C) increased the flexure strength of the composites to ~5 MPa after heat treatment above 1000°C to 1200°C. A Weibull statistical analysis was performed exhibiting how the amorphous self-healing and self-glazing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after exposure for 1 hour to high temperatures. At 950-1000°C, the K-based geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed out of the surface cracks and sealed them. 1150℃ was determined to be the optimum heat treatment temperature, as at ≤1200°C, the basalt fibers melt and the strength of the reinforcement in the composites is significantly reduced. The amorphous self-healing and amorphous self-glazing effects of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer and ceramic composites.  相似文献   

5.
In this study, 65 wt% aligned untreated long hemp fibre/epoxy (AUL) and aligned alkali treated long hemp fibre/epoxy (AAL) composites cured at 70°C using compression moulding were subjected to accelerated weathering using an accelerated weathering chamber with UV-irradiation and water spray at 50°C for four different time periods (250, 500, 750 and 1000 h). After accelerated weathering, tensile strength (TS), flexural strength, Young's modulus (YM), flexural modulus and fracture toughness (K Ic) were found to decrease and impact energy (IE) was found to increase for both AUL and AAL composites. AUL composite had greater overall reduction in mechanical properties than that for AAL composite upon exposure to accelerated weathering environment. FTIR, TGA and WAXRD analyses of the accelerated weathered composites support the results of the deterioration of mechanical properties upon exposure to accelerated weathering environment.  相似文献   

6.
Abstract

A collaborative test programme has been undertaken on modified epoxy matrix 8552 reinforced with AS4 carbon fibres, and cyanate 954-3 reinforced with M55J high modulus carbon fibre, both in the form of unidirectional prepreg. To date more than 300 specimens have been tested according to the EN 2561 standard (tensile test parallel to the fibre direction). Different testing conditions such as tabbed and untabbed specimens, dry and wet conditioning, 23 and 70°C test temperature, 7° bevelled or squared off 90° tabs, and the influence of different gripping systems (mechanical and hydraulic) were studied. Average strength values and Young's modulus values are presented with their standard deviations for these materials at every tested condition. In tensile strength measurements, the importance of using tabs for the gripping system and tested material is demonstrated.  相似文献   

7.
《Ceramics International》2020,46(2):1297-1306
Three types of SiCf/SiC composites with a four-step three-dimensional SiC fibre preform and pyrocarbon interface fabricated via precursor infiltration and pyrolysis at 1100 °C, 1300 °C, and 1500 °C were heat-treated at 1300 °C under argon atmosphere for 50 h. The effects of the pyrolysis temperature on the microstructural and mechanical properties of the SiCf/SiC composites were studied. With an increase in the pyrolysis temperature, the SiC crystallite size of the as-fabricated composites increased from 3.4 to 6.4 nm, and the flexural strength decreased from 742 ± 45 to 467 ± 38 MPa. After heat treatment, all the samples exhibited lower mechanical properties, accompanied by grain growth, mass loss, and the formation of open pores. The degree of mechanical degradation decreased with an increase in the pyrolysis temperature. The composites fabricated at 1500 °C exhibited the highest property retention rates with 90% flexural strength and 98% flexural modulus retained. The mechanism of the mechanical evolution after heat treatment was revealed, which suggested that the thermal stability of the mechanical properties is enhanced by the high crystallinity of the SiC matrix after pyrolysis at higher temperatures.  相似文献   

8.
The failure mechanisms of Oxide-Oxide ceramic matrix composites AS-N610 were studied at both room temperature and high temperature using tensile and fatigue tests with and without lateral and laminar notches. The unnotched coupons had an average tensile strength of 423 MPa with elastic modulus of 97 GPa at room temperature showing a perfect elastic behaviour whereas the laminar notched samples shown similar strength of 425 MPa with elastic modulus (98 GPa) revealing pseudo-ductile behaviour. A reduction in tensile strength of the oxide ceramic matrix composites was observed at high temperatures. Thermal shock experiments revealed that the retained strength of the samples quenched from 1100 °C deteriorated by ~10 % (395 ± 15 MPa). In all samples, fracture origin was observed on the mid-plane showing a higher degree of fiber pull-out, delamination and pseudo ductile behaviour. Finite element analysis confirmed higher stress concentration on the areas of failures.  相似文献   

9.
The aim of this work is to investigate the thermal conversion of carbon fibres/polysiloxane composites to carbon fibres/ceramic composites. The conversion mechanism of four different resins to the ceramic phase in the presence of carbon fibres is investigated. The experiments were conducted in three temperature ranges, corresponding to composite manufacturing stages, namely up to 160 °C, 1000 °C and finally 1700 °C.The study reveals that the thermal conversion mechanism of pure resins in the presence of carbon fibres is similar to that without fibres up to 1000 °C. Above 1000 °C thermal decomposition occurs in both solid (composite matrix) and gas phases, and the presence of carbon fibres in resin matrix produces higher mass losses and higher porosity of the resulting composite samples in comparison to ceramic residue obtained from pure resin samples. XRD analysis shows that at temperature of 1700 °C composite matrices contain nanosized silicon carbide. SEM and EDS analyses indicate that due to the secondary decomposition of gaseous compounds released during pyrolysis a silicon carbide protective layer is created on the fibre surface and fibre–matrix interface. Moreover, nanosized silicon carbide filaments crystallize in composite pores.Owing to the presence of the protective silicon carbide layer created from the gas phase on the fibre–matrix interface, highly porous C/SiC composites show significantly high oxidation resistance.  相似文献   

10.
SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapour deposited (CVD) BN interface layers were fabricated. The mechanical performance and binding strength of the composites and the fibre/interface for the oxidized SiCf/BN/SiC mini-composite samples (oxidation at 1000, 1200, 1300, 1400 and 1500 °C in air for two hours) were investigated by tensile tests and fibre push-out tests, respectively. The value of oxidation mass change was also measured. Some unusual phenomena for the SiCf/BN/SiC mini-composites oxidized at 1000 °C were discovered in this work. The tensile strength reached a maximum value, and the mass gain rate showed as a singular negative value, while the shear strength between the fibre and the matrix was moderate. Scanning electron microscopy, energy dispersive spectrometry, infrared spectroscopy and X-ray diffraction characterization methods were used to reveal the microstructural evolution and investigate the unusual phenomenon during oxidation procedures. This work will provide guidance for predicting the service life of SiCf/BN/SiC composite materials and may enable these materials to become a backbone for thermal structure systems in aerospace applications.  相似文献   

11.
《Ceramics International》2019,45(14):17344-17353
The processing of 3D carbon fiber reinforced SiCN ceramic matrix composites prepared by polymer impregnation and pyrolysis (PIP) route was improved, and factors that determined the mechanical performance of the resulting composites were discussed. 3D Cf/SiCN composites with a relative density of ∼81% and uniform microstructure were obtained after 6 PIP cycles. The optimum bending strength, Young's modulus and fracture toughness of the composites were 75.2 MPa, 66.3 GPa and 1.65 MPa m1/2, respectively. The residual strength retention rate of the as-pyrolyzed composites was 93.3% after thermal shock test at ΔT = 780 °C. It further degraded to 14.6% when the thermal shock temperature difference reached to 1180 °C. The bending strength of the composites was 35.6 MPa after annealing at 1000 °C in static air. The deterioration of the bending strength should be attributed to the strength degradation of carbon fibers and decomposition of interfacial structure.  相似文献   

12.
The microstructure and mechanical properties of CVI-Cansas-III/PyC/SiC composites were systematically investigated after heat treatment under high temperature argon atmosphere, ranging from 1000 °C to 1500 °C, for different time durations. The results showed that the Cansas-III fibres degraded with increasing heat treatment temperature, resulting in degradation of the fibre properties due to pyrolysis of the SiOC phase inside the fibres. The bending strength of the composites remained nearly constant upon heat treatment at 1000 °C and 1250 °C, while a decline in bending strength was observed upon increasing the heat treatment temperature and time, specifically at 1350 °C and above. Moreover, the composites maintained their pseudo-plastic fracture behaviour below 1450 °C, while displaying brittle fracture of the ceramic after 100 h of heat treatment at 1500 °C, due to the complete crystallisation of the fibres.  相似文献   

13.
Silicone resins have been used as binders for ceramic frit coatings and can withstand temperatures of 650°C to 1260°C. Conceptually, silicone resins can potentially be used as matrices for high temperature fiber‐reinforced composites. The mechanical and thermal properties of a commercially available silicone resin, Dow Corning® 6‐2230, were characterized. Neat 6‐2230 resin was found to have inferior room temperature mechanical properties such as flexural, tensile and fracture properties when compared to epoxy. The room temperature flexural properties and short beam shear strength of the silicone/glass composites were also found to be lower than those of epoxy/glass composite with similar glass content. However, the silicone resin had better elevated temperature properties. At an elevated temperature of 316°C, the retentions of flexural modulus and strength were 80% and 40% respectively of room temperature values; these were superior to those of phenolic/glass. Unlike the carbon‐based resins, the drop in flexural properties of the silicon/glass laminates with temperature leveled off with increase in temperature beyond 250°C. The resin weight loss at 316°C in 100 cm3/min of flowing air was small compared to other carbon‐based resins such as PMR‐15 and LaRC TPI. Only Avimid‐N appeared comparable to Dow Corning® 6‐2230.  相似文献   

14.
SiCf/PyC/SiC and SiCf/BN/SiC mini-composites comprising single tow SiC fibre-reinforced SiC with chemical vapor deposited PyC or BN interface layers are fabricated. The microstructure evolutions of the mini-composite samples as the oxidation temperature increases (oxidation at 1000, 1200, 1400, and 1600?°C in air for 2?h) are observed by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction characterization methods. The damage evolution for each component of the as-fabricated SiCf/SiC composites (SiC fibre, PyC/BN interface, SiC matrix, and mesophase) is mapped as a three-dimensional (3D) image and quantified with X-ray computed tomography. The mechanical performance of the composites is investigated via tensile tests.The results reveal that tensile failure occurs after the delamination and fibre pull-out in the SiCf/PyC/SiC composites due to the volatilization of the PyC interface at high temperatures in the air environment. Meanwhile, the gaps between the fibres and matrix lead to rapid oxidation and crack propagation from the SiC matrix to SiC fibre, resulting in the failure of the SiCf/PyC/SiC composites as the oxidation temperature increases to 1600?°C. On the other hand, the oxidation products of B2O3 molten compounds (reacted from the BN interface) fill up the fracture, cracks, and voids in the SiC matrix, providing excellent strength retention at elevated oxidation temperatures. Moreover, under the protection of B2O3, the SiCf/BN/SiC mini-composites show a nearly intact microstructure of the SiC fibre, a low void growth rate from the matrix to fibre, and inhibition of new void formation and the SiO2 grain growth from room to high temperatures. This work provides guidance for predicting the service life of SiCf/PyC/SiC and SiCf/BN/SiC composite materials, and is fundamental for establishing multiscale damage models on a local scale.  相似文献   

15.
《Ceramics International》2020,46(9):13088-13094
Continuous silicon carbide fiber reinforced silicon carbide matrix (SiCf/SiC) composites have promising applications in aero-engine due to their unique advantages, such as low density, high modulus and strength, outstanding high temperature resistance and oxidation resistance. As SiC fibers are main reinforcements in SiCf/SiC composites, the crystallization rate and initial damage degree of SiC fibers are seriously influenced by preparation temperatures of SiCf/SiC composites, namely mechanical properties of SiC fibers and SiCf/SiC composites are influenced by preparation temperatures. In this paper, KD-II SiC fibers were woven into 3D4d preforms and SiC matrix was fabricated by PIP process at 1100 °C, 1200 °C, 1400 °C and 1600 °C. Digital image correlation (DIC) method was adopted to measure the uniaxial tensile properties of these SiCf/SiC composites. In addition, finite element method (FEM) based on representative volume element (RVE) was adopted to predict the mechanical properties of SiCf/SiC composites. The good agreements between numerical results and experimental results of uniaxial tensile tests verified the validity of the RVE. In last, the transverse tensile, transverse shear, uniaxial shear properties were predicted by this method. The predicted results illustrated that axial tensile, transverse tensile and axial shear properties were greatly influenced by the preparation temperatures of SiCf/SiC composites while transverse shear properties were not significantly various. And the mechanical properties of SiCf/SiC composites peaked at 1200 °C among these four temperatures while their values reached their lowest points at 1600 °C because of thermal damage and brittle failure of SiCf/SiC composites.  相似文献   

16.
The effects of heat treatment on the mechanical properties of plain-woven SiC/SiC composites at 927 °C and 1200 °C in argon were evaluated through tensile tests at room temperature and at elevated temperature on the as-received and heat-treated plain-woven SiC/SiC composites, respectively. Heat treatment can improve the mechanical properties of composites at room temperature due to the release of thermal residual stress. Although heat treatment can damage the fiber, the effect of this damage on the mechanical properties of composites is generally less than the effect of thermal residual stress. Heat treatment will graphitize the pyrolytic carbon interface and reduce its shear strength. Testing temperature will affect the expansion or contraction of the components in the composites, thereby changing the stress state of the components. This study can provide guidance for the optimization of processing of ceramic matrix composites and the structural design in high-temperature environments.  相似文献   

17.
The ambient and elevated temperature mechanical properties of two kinds of hot-pressed fused silica matrix composites, SiO2+5 vol.% Si3N4 and SiO2+5 vol.% Si3N4+ 10 vol.% Cf, were investigated. Si3N4 additions greatly enhanced the ambient strength and fracture toughness, while, further incorporation of chopped carbon fibers only but sharply increased the fracture toughness value from 1.22 to 2.4 MPa m1/2. The strength of the two composites synchronously exhibited anomalous gains at certain elevated temperature range especially from 1000 to 1200 °C, and reached their maximum values at 1000 °C, 168.9 and 130.6 MPa, which were 77.0 and 77.4% higher than their ambient strength, respectively. The two composites exhibited catastrophic fracture even at 1000 °C, but manifested prominent plastic deformation at 1200 °C and usually no fracture occurred during the strength test. Vickers’ indentation crack propagation behavior, combined with fractographs studies, suggested that toughening from carbon fiber was attributed primarily to the fiber bridging, pull-out and crack deflection.  相似文献   

18.
Geopolymer composites containing refractory, chopped basalt fibers and low-melting glass were made and systematically heat-treated at higher temperatures. Potassium-based geopolymer of stoichiometric composition K2O·Al2O3·4SiO2·11H2O was produced by high shear mixing from fumed silica, deionized water, potassium hydroxide, (i.e., water glass) and metakaolin. With the addition of low-melting glass (Tm ~815°C) the flexure strengths of the composites increased to ~6 MPa after heat treatment above 900°C to 1100°C. A Weibull statistical analysis was performed showing how the amorphous self-healing effect of the glass frit significantly improved the flexure strength of the geopolymer and ceramic composites after high-temperature exposure. At temperatures up to 900°C, the geopolymer-basalt composite remained amorphous and the low-melting glass frit flowed into the dehydration cracks in the geopolymer matrix. This type of composite could be described as amorphous self-healed geopolymer (ASH-G). At ~1000°C, the geopolymer converted to primarily a crystalline leucite ceramic, but the basalt fiber remained intact, and the melted glass frit flowed and sealed the cracks developed at that temperature. This type of composite could then be described as amorphous self-healed ceramic (ASH-C). A temperature of 1150°C was determined to be optimum as at 1200°C the basalt fibers melted and the strength of the reinforcement was lost in the composites. The amorphous self-healing effect of the glass frit significantly improved the room temperature flexure strength of the heat-treated geopolymer-based composites.  相似文献   

19.
Continuous alumina fiber–reinforced alumina matrix composites (Al2O3f/Al2O3 composites) were produced via sol–gel process, then the high-temperature mechanical property and thermal shock resistance of Al2O3f/Al2O3 composites were investigated. The results showed that the composites exhibited excellent high-temperature properties. The mechanical property of the composites was affected by heat treatment (prepared at 1100°C exhibited the most desirable mechanical property). The tensile strength of the composites abruptly decreased at higher temperatures. Although the mechanical property of the composites deteriorated after the thermal shock test was conducted at high temperatures, they exhibited excellent thermal shock resistance. After 50 thermal shock tests conducted at 1300 and 1500°C, the flexural strength of the composites was found to be 124.34 and 93.04 MPa, thus showing a decrease in strength with the increasing temperature.  相似文献   

20.
《Ceramics International》2022,48(6):7836-7849
The characteristics of the interface are the key factors that determine the mechanical properties and fracture behavior of fiber-reinforced ceramic matrix composites. Design and preparation of coatings which can preserve fiber strength and maintain appropriate interfacial bonding strength are of great challenges. LaPO4 coating is a promising weak interface coating for oxide fiber reinforced oxide ceramic matrix composites. Through this coating, the toughening mechanism of the composite such as fiber pulling out and fiber debonding is triggered. The LaPO4 coating was deposited on the surface of alumina-based fibers by a solution precursor heterogeneous precipitation method. The effects of different precursors and different deposition temperatures on fiber strength were studied, and the mechanism of the strength degradation of the coated fiber was analyzed. It was found that the fibers coated with phytic acid precursor and deposited at 90 °C had the highest tensile strength compared to other coated fibers. The retention of strength is attributed to its loosely stacked coating. Besides, a single fiber pullout test was carried out to evaluate the effect of the coating on the interface of the composites. The results show that the composites coated by depositing citric acid precursor and phytic acid precursor at 90 °C can reduce the interfacial bonding strength by 32.5% and 46.7%, respectively compared to uncoated composites. This study has potential application value in the preparation of ceramic matrix composites used in oxidation and high temperature environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号