首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Al2O3 and K2O content on structure, sintering and devitrification behaviour of glasses in the Li2O–SiO2 system along with the properties of the resultant glass–ceramics (GCs) was investigated. Glasses containing Al2O3 and K2O and featuring SiO2/Li2O molar ratios (3.13–4.88) far beyond that of lithium disilicate (Li2Si2O5) stoichiometry were produced by conventional melt-quenching technique along with a bicomponent glass with a composition 23Li2O–77SiO2 (mol.%) (L23S77). The GCs were produced through two different methods: (a) nucleation and crystallization of monolithic bulk glass, (b) sintering and crystallization of glass powder compacts.Scanning electron microscopy (SEM) examination of as cast non-annealed monolithic glasses revealed precipitation of nanosize droplet phase in glassy matrices suggesting the occurrence of phase separation in all investigated compositions. The extent of segregation, as judged from the mean droplet diameter and the packing density of droplet phase, decreased with increasing Al2O3 and K2O content in the glasses. The crystallization of glasses richer in Al2O3 and K2O was dominated by surface nucleation leading to crystallization of lithium metasilicate (Li2SiO3) within the temperature range of 550–900 °C. On the other hand, the glass with lowest amount of Al2O3 and K2O and glass L23S77 were prone to volume nucleation and crystallization, resulting in formation of Li2Si2O5 within the temperature interval of 650–800 °C.Sintering and crystallization behaviour of glass powders was followed by hot stage microscopy (HSM) and differential thermal analysis (DTA), respectively. GCs from composition L23S77 demonstrated high fragility along with low flexural strength and density. The addition of Al2O3 and K2O to Li2O–SiO2 system resulted in improved densification and mechanical strength.  相似文献   

2.
A widely adopted approach to form matched seals in metals having high coefficient of thermal expansion (CTE), e.g. stainless steel, is the use of high CTE glass‐ceramics. With the nucleation and growth of Cristobalite as the main high‐expansion crystalline phase, the CTE of recrystallizable lithium silicate Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO glass‐ceramic can approach 18 ppm/°C, matching closely to the 18 ppm/°C–20 ppm/°C CTE of 304L stainless steel. However, a large volume change induced by the α‐β inversion between the low‐ and high‐ Cristobalite, a 1st order displacive phase transition, results in a nonlinear step‐like change in the thermal strain of glass‐ceramics. The sudden change in the thermal strain causes a substantial transient mismatch between the glass‐ceramic and stainless steel. In this study, we developed new thermal profiles based on the SiO2 phase diagram to crystallize both Quartz and Cristobalite as high expansion crystalline phases in the glass‐ceramics. A key step in the thermal profile is the rapid cooling of glass‐ceramic from the peak sealing temperature to suppress crystallization of Cristobalite. The rapid cooling of the glass‐ceramic to an initial lower hold temperature is conducive to Quartz crystallization. After Quartz formation, a subsequent crystallization of Cristobalite is performed at a higher hold temperature. Quantitative X‐ray diffraction analysis of a series of quenched glass‐ceramic samples clearly revealed the sequence of crystallization in the new thermal profile. The coexistence of two significantly reduced volume changes, one at ~220°C from Cristobalite inversion and the other at ~470°C from Quartz inversion, greatly improves the linearity of the thermal strains of the glass‐ceramics, and is expected to improve the thermal strain match between glass‐ceramics and stainless steel over the sealing cycle.  相似文献   

3.
The effects of K2O content on sintering and crystallization of glass powder compacts in the Li2O–K2O–Al2O3–SiO2 system were investigated. Glasses featuring SiO2/Li2O molar ratios of 2.69–3.13, far beyond the lithium disilicate (LD-Li2Si2O5) stoichiometry, were produced by conventional melt-quenching technique. The sintering and crystallization behaviour of glass powders was explored using hot stage microscopy (HSM), scanning electron microscopy (SEM), differential thermal (DTA) and X-ray diffraction (XRD) analyses. Increasing K2O content at the expense of SiO2 was shown to lower the temperature of maximum shrinkage, eventually resulting in early densification of the glass-powder compacts. Lithium metasilicate was the main crystalline phase formed upon heat treating the glass powders with higher amounts of K2O. In contrast, lithium disilicate predominantly crystallized from the compositions with lower K2O contents resulting in strong glass–ceramics with high chemical and electrical resistance. The total content of K2O should be kept below 4.63 mol% for obtaining LD-based glass–ceramics.  相似文献   

4.
Development of lithium disilicate-based glass-ceramics critically depends on use of nucleating agent in the glass matrix. The present study reports the effect of externally added nucleating agent Li3PO4 in Li2O–K2O–MgO–ZnO–ZrO2–Al2O3–SiO2 system which is compared with a reference composition (GC1) (SiO2:Li2O = 2.16:1) prepared with in situ formed Li3PO4. For externally added Li3PO4, two compositions were studied. In one case (GC2) before addition of Li3PO4, SiO2:Li2O ratio in glass was maintained as 2.87:1 and in another case (GC3) SiO2:Li2O ratio in glass was maintained same as reference GC1 that is, 2.16:1. The glasses were characterized by using MAS-NMR spectroscopy. Sintering and crystallization behavior of the glass-ceramics was characterized by using XRD, SEM, DTA. Due to in situ formation of Li3PO4, GC1 resulted in a dense sample with finer crystals of lithium disilicate. In GC2 and GC3, externally added lithium phosphate, which was in the form of ultrafine aggregated particles, formed flower-like colonies of radially outward crystals. Higher SiO2:Li2O ratio in GC2 resulted in lithium disilicate crystals and high viscous glass causing large air entrapment and so less densification. GC3 with higher lithia in glass showed higher densification than GC2 but only lithium metasilicate crystals were formed.  相似文献   

5.
The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.  相似文献   

6.
The effect of the ZnO/MgO ratio on the crystallization and optical properties of glass‐ceramic glazes from the SiO2–Al2O3–ZnO–MgO–CaO–K2O–Na2O–B2O3 system was studied. The glazes with different ZnO/MgO ratios were characterized by differential scanning calorimetry, X‐ray powder diffraction, Raman spectroscopy, scanning electron microscopy, energy dispersive spectroscopy analysis and a spectrophotometer. The results reveal that the A glaze without ZnO content contains forsterite and sapphirine. The B and C glazes with intermediate ZnO/MgO ratio contain enstatite and spinel solid solution. The D to F glazes with higher ZnO/MgO ratio crystallize spinel solid solution as the only crystalline phase. The amount of spinel solid solution, lightness values (L*), gloss values and the reflectance of the studied glazes increase with the ZnO/MgO ratio.  相似文献   

7.
It is known that the addition of Li2O to 33.3BaO-66.7SiO2 glass, whose composition is the same as BaSi2O5, promotes crystallization of BaSi2O5. In this study, in order to clarify the effect of a smaller amount of Li2O, xLi2O-(30-x)BaO-70SiO2[mol%] (x = 0, 0.2, 0.5) glasses were prepared. The main crystalline phases in the heat treatments near the maximum crystallization peak temperature, were high-BaSi2O5 and low-BaSi2O5 which transformed from high-BaSi2O5. It is found that the introduction of only 0.2 mol% and 0.5 mol% Li2O significantly changes the crystallization behavior. In the composition without Li2O, only high-BaSi2O5 was formed after heat treatment even for 24 h. For compositions containing Li2O, low-BaSi2O5 was formed within 1 h of heat treatment. In these compositions, it is found that the addition of Li2O enhances phase separation in the early stage of heat treatment, resulting in the formation of Si-rich droplet phases and Ba-rich phases. The composition of the Ba rich glass phase would be close to the stoichiometric composition of BaSi2O5, suggesting a significant change in crystallization behavior.  相似文献   

8.
The effect of Y2O3 on the glass transition kinetics, crystallization kinetics, phase separation and crystallization behavior of 60ZnO–30B2O3–10SiO2 glass has been investigated by non-isothermal differential thermal analysis, scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). The glass transition activation energies Eg calculated by using both Kissinger and Moynihan model decrease from 668?kJ/mol to 573?kJ/mol for Kissinger model, and 682?kJ/mol to 587?kJ/mol for Moynihan model with the increase of yttrium oxide doping content from 0 to 6?mol%. And the glass crystallization kinetics parameters, crystallization activation energy Ec and Avrami exponent n stands for crystal growth, are also obtained on the basis of several well developed equations. Increase of about 58?kJ/mol in Ec values obtained by different theoretical equations is caused by addition of 6?mol% yttrium oxide into 60ZnO–30B2O3–10SiO2 glass, and the Avrami exponent (n close to 2) suggests that crystal growth in 60ZnO–30B2O3–10SiO2 glass doped with or without yttrium is mainly one-dimensional growth of crystals. The results on the phase separation and crystallization behavior occurred at 893?K and 993?K respectively for base and doped glass, are well consistent with the glass transition and crystallization kinetics results. Hence, addition of yttrium oxide into 60ZnO–30B2O3–10SiO2 glass decrease the glass transition activation energy while increase the crystallization activation energy of glass, thereby the stability of glass structure is improved. Phase separation phenomenon and crystallization behavior occurred at glass surface provide some useful information for preparing glass ceramics with micro- or nano-crystals in surface.  相似文献   

9.
BaTi4O9 (BT4) microwave dielectric ceramics using a copper electrode and containing 10 wt% BaO–ZnO–B2O3–SiO2 (BZBS) glass frit were sintered under reducing atmosphere at 950 °C and were investigated on the phase evolutions, microstructures and dielectric properties of BT4 with various BaO/SiO2 and ZnO/SiO2 ratios of BZBS glasses. Experimental results show that the BaO/SiO2 ratio contributes to wettability of glass with BaTi4O9 ceramics, and ZnO/SiO2 ratio determines the densification of BaTi4O9 ceramics. The different Ba–Ti–O and Ba–Cu–O phases with various Ba/Ti and Ba/Cu ratios can be attributed to the contents of BaO in glass. Ba4Ti13O30 and Ba2Cu3O5+X may form when BaO contents are too high, and inducing copper diffusion due to the reactions of BaO and Cu, accompanying with degrading of the dielectric characteristics. If the ZnO contents of BZBS glasses were raised, a little bit of ZnSiO3 and Ba2Cu3O5+X phases appear without Cu diffusion due to non-reaction of ZnO and CuO. The high ZnO/SiO2 ratio of glass reveals the lower softening point, indicating that the high ZnO glass could enhance the density and therefore increase the dielectric constant and quality factor.  相似文献   

10.
Because of the superior photocatalytic activities of nanocrystalline TiO2 and ZnO under UV irradiation, they were embedded into the glass system (SiO2, TiO2, ZnO, B2O3, Na2O, K2O, P2O5, Li2O and BaO) to provide easy separation from the aqueous system. Different contents of TiO2 and ZnO have been investigated. Conversion to glass-ceramic materials was carried out by heat treatment at 450 °C, which is the onset of the nucleation peak according to the differential thermal analysis (DTA) result, for different times. This heat treatment regime preserves the transparency of the prepared materials in the visible region and good absorption in the UV region. The high content of TiO2 or ZnO caused an improvement of microhardness of the prepared materials, though the presence of the two oxides with the same ratio decreased the microhardness values. Photocatalytic activity of the prepared glass-ceramic materials was investigated according to their efficiency for the degradation of humic acid (HA), the major precursor of disinfection by-products (DBPs), from water. All samples were proved to be photoactive with different extents. Four hours heat treatment at 450 °C appears to be the best conditions for the development of TiO2 and ZnO crystals leading to better photocatalytic activity.  相似文献   

11.
Although glass–ceramics have been widely explored for their thermal stability and mechanical properties, they also offer unique symmetry-dependent properties such as piezoelectricity and pyroelectricity through controlled crystallization of a polar phase. This work examines crystallization of LiNbO3 in a 35SiO2–30Nb2O5–35Li2O mol% composition and crystallization of LiNbO3 and NaNbO3 in a 35SiO2–30Nb2O5–25Li2O–10Na2O mol% composition. Crystallization kinetics are examined using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory where the Avrami exponent, n, is calculated to be 1.0–1.5. Microscopical analysis shows dendritic morphology, which when combined with the JMAK analysis, suggests diffusion-controlled one-dimensional growth. Adding Na2O to the glass composition increases the inter-diffusivity of ions which causes LiNbO3 to crystallize faster and lowers the activation energy of transformation from 1054 ± 217 kJ/mol in the ternary composition to 882 ± 212 kJ/mol. Time-temperature-transformation diagrams are presented which show that the temperature for maximum rate of transformation for LiNbO3 is ∼650°C and for NaNbO3 is ∼715°C.  相似文献   

12.
《Ceramics International》2022,48(9):12699-12711
The effect of variation of MgO (1.5, 4.5 and 7.5 mol%) content on glass structure, crystallization behavior, microstructure and mechanical properties in a Li2O–K2O–Na2O–CaO–MgO–ZrO2–Al2O3–P2O5–SiO2 glass system has been reported here. Increased amount of MgO enhanced the participation of Al2O3 as a glass network former along with [SiO4] tetrahedra, reducing the amount of non-bridging oxygen (NBO) and increasing bridging oxygen (BO) amount in glass. The increased BO in glass resulted in a polymerized glass structure which suppressed the crystallization and subsequently increased the crystallization temperature, bulk density, nano hardness, elastic modulus in the glasses as well as the corresponding glass-ceramics. MgO addition caused phase separation in higher MgO (7.5 mol%) containing glass system which resulted in larger crystals. The nano hardness (~10 GPa) and elastic modulus (~127 GPa) values were found to be on a much higher side in 7.5 mol% MgO containing glass-ceramics as compared to lower MgO containing glass-ceramics.  相似文献   

13.
The effects of Li2O–ZnO–B2O3 (LZB) glass addition on densification and dielectric properties of Ba4(Nd0.85Bi0.15)9.33Ti18O54 (BNBT) have been investigated. At a given ratio of ZnO/B2O3, the glass softening point decreases, but the thermal expansion coefficient and dielectric constant increase with increasing Li2O content in the LZB glass. With 10 vol% LZB glass, the densification temperature reduces greatly from 1300°C for pure BNBT to 875°C–900°C for BNBT + LZB dielectric, and the densification enhancement becomes more significant with increasing Li2O content in the LZB glass. The above result is attributed to a chemical reaction taking place at the interface of LZB/BNBT during firing, which becomes less extensive with increasing Li2O content in the LZB glass. Therefore, more residual LZB glass, which acts as a densification promoter to BNBT, is left with increasing Li2O content. For the LZB glass with a Li2O content in the range 10–30 mol%, the resulting 90 vol% BNBT + 10 vol% LZB microwave dielectric has a dielectric constant of 55–70, product (Q × fr) of quality factor (Q) and resonant frequency (fr) of 1000–3000 GHz at 5–5.79 GHz, and a temperature coefficient of resonant frequency (τf) of 10–60 ppm/°C in the temperature range between 25°C and 80°C.  相似文献   

14.
Types and contents of alkali metal ions play important role on crystallization and ion-exchange properties in glasses. In this work, effects of Na2O/K2O ratio on crystallization and ion-exchange properties of zinc-alumino-silicate glasses were investigated. The crystalline phases precipitated in glasses changes from ZnO to β-Zn2SiO4 with the progressive replacement of K2O by Na2O in parent glasses. Ion-exchange depth of layer (DOL) decreases gradually with the increase in Na2O content in parent glasses. Precipitation of ZnO and β-Zn2SiO4 nanocrystals facilitated the ion-exchange and enlarged the DOL. Na+ and K+ ions were doped into ZnO and β-Zn2SiO4 nanocrystals during heat-treatment, and the extent of doping was facilitated by ion-exchange. Vickers hardness were improved significantly with the crystallization and ion-exchange. Results reported here are valuable for the controlled preparation and chemical strengthening of ZnO and β-Zn2SiO4 glass-ceramics.  相似文献   

15.
The crystallization of the xK2O · xNb2O5· (1 – 2x)SiO2(x= 0.167–0.250) glasses and glasses close in composition to K2O · Nb2O5· 4SiO2at the ratio K2O : Nb2O5 1 is investigated. In high-silica glasses, the metastable phase separation followed by the bulk multiphase crystallization are observed at temperatures close to the glass transition point T g. The nanostructured transparent glasses that exhibit the optical second harmonic generation (SHG) effect are formed at the early stages of phase separation. The surface crystallization of glasses with the precipitation of the KNbSi2O7noncentrosymmetric phase occurs at higher temperatures.  相似文献   

16.
The effects of Li2O–ZnO–B2O3 glass additive on the sintering behavior, phase formation, microstructure, and microwave dielectric properties of ZnTiNb2O8 ceramics have been investigated. The sintering temperature of ZnTiNb2O8 ceramics can be effectively reduced from 1200°C to 875°C by adding a small amount of Li2O–ZnO–B2O3 glass, while no obvious degradation of the microwave dielectric properties was induced. Typically, the 2.0 wt% Li2O–ZnO–B2O3 glass-added ceramic sintered at 875°C has better microwave dielectric properties of ɛr=31.8, Q×f=25,013 GHz, and τf=−62 ppm/°C. In addition, the ceramics can be co-fired well with an Ag electrode.  相似文献   

17.
《Ceramics International》2022,48(14):20053-20061
The composition governs the crystallization ability, the type and content of crystal phases of glass-ceramics. Glass-ceramic joining materials have generated more research interest in recent years. Here, we prepared a novel Li2O–MgO–Al2O3–SiO2 glass-ceramic for the application of joining Si3N4 ceramics. We investigated the influence of the MgO/Al2O3 composition ratio on microstructure and crystallization behaviour. The crystallization kinetics demonstrated that the glasses had excellent crystallization ability and high crystallinity. β-LiAlSi2O6 and Mg2SiO4 were precipitated from the glass-ceramics, and the increase of MgO concentration was conducive to the precipitation of Mg2SiO4. Among the glass-ceramic samples, the thermal expansion coefficient of LMAS2 glass-ceramic was 3.1 × 10?6/°C, which was very close to that of Si3N4 ceramics. The wetting test showed that the final contact angle of the glass droplet on the Si3N4 ceramic surface was 32° and the interface was well bonded.  相似文献   

18.
《Ceramics International》2023,49(7):10420-10427
The present study focuses on taking advantage of both Zinc Silicate (Zn2SiO4) and Zinc Oxide (ZnO) crystals in the glass matrix for enhancing photocatalytic activity. The fabricated samples were used as a photocatalyst for degrading ~ 5 mg/L concentrated “Methylene Blue” (MB) and “Rhodamine B” (RB) dye separately under visible light. For this, 44 SiO2:11 Al2O3:35 ZnO:10 K2O compositions were prepared via the traditional melt quench process followed by heat treating at a temperature of 750 °C at 2, 4, and 6 h. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) was employed to characterize the fabricated samples. The bandgap measured from Differential reflectance spectroscopy (DRS) was found to decrease with an increase in the heat treatment duration. 44 SiO2:11 Al2O3:35 ZnO:10 K2O composition heat-treated at 750 °C for 2 h degraded ~59% and ~71% of Rhodamine B (RB) dye and Methylene Blue (MB) dye under visible light in 4 h.  相似文献   

19.
This study focused on the glass forming, crystallization, and physical properties of ZnO doped MgO-Al2O3-SiO2-B2O3 glass-ceramics. The results show that the glass forming ability enhances first with ZnO increasing from 0 to 0.5 mol%, and then weakens with further addition of ZnO which acted as network modifier. No nucleating agent was used and the crystallization of studied glasses is controlled by a surface crystallization mechanism. The predominant phase in glass-ceramics changed from α-cordierite to spinel/gahnite as ZnO gradually replaced MgO. The phase type did not change; however, the crystallinity and grain size in glass-ceramics increased when the glasses were treated from 1030 °C to 1100 °C. The introduction of ZnO can improve the thermal, mechanical, and dielectric properties of the glass-ceramics. The results reveal a rational mechanism of glass formation, crystal precipitation, and evolution between structure and performance in the xZnO-(20-x)MgO-20Al2O3-57SiO2-3B2O3 (0 ≤ x ≤ 20 mol%) system.  相似文献   

20.
Glass compositions with formula (71.78 − x)SiO2-2.63Al2O3-(2.63 + x)K2O-23.7Li2O (mol.%, x = 0-10) and SiO2/Li2O molar ratios far beyond that of stoichiometric lithium disilicate (Li2Si2O5) were prepared by conventional melt-quenching technique to investigate the influence of K2O content on structural transformations and devitrification behaviour of glasses in the Li2O-SiO2 system. The scanning electron microscopy (SEM) examination of as cast non-annealed glasses revealed the presence of nanosized droplets in glassy matrices suggesting occurrence of liquid-liquid phase separation. An overall trend towards depolymerization of the silicate glass network with increasing K2O content was demonstrated by employing magic angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopy. The distribution of structural units in the experimental glasses was estimated using 29Si MAS-NMR spectroscopy suggesting the appearance of Q2, enhancement of Q3 and diminishing of Q4 groups with increasing K2O contents. X-ray diffraction (XRD) and differential thermal analysis (DTA) were used to assess the influence of K2O on devitrification process and formation of lithium disilicate (Li2Si2O5) and/or lithium metasilicate (Li2SiO3) crystalline phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号