首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the stress regime that develops in the vicinity of reinforcements in reinforced soil masses may prove crucial to understanding, quantifying, and modeling the behavior of a reinforced soil structures. This paper presents analyses conducted to describe the evolution of stress and strain fields in a reinforced soil unit cell, which occur as shear stresses are induced at the soil-reinforcement interface. The analyses were carried out based on thorough measurements obtained when conducting soil-reinforcement interaction tests using a new large-scale device developed to specifically assess geosynthetic-reinforced soil behavior considering varying reinforcement vertical spacings. These experiments involved testing a geosynthetic-reinforced mass with three reinforcement layers: an actively tensioned layer and two passively tensioned neighboring layers. Shear stresses from the actively tensioned reinforcement were conveyed to the passively tensioned reinforcement layers through the intermediate soil medium. The experimental measurements considered in the analyses presented herein include tensile strains developed in the reinforcement layers and the displacement field of soil particles adjacent to the reinforcement layers. The analyses provided insights into the lateral confining effect of geosynthetic reinforcements on reinforced soils. It was concluded that the change in the lateral earth pressure increases with increasing reinforcement tensile strain and reinforcement vertical spacing, and it decreases with increasing vertical stress.  相似文献   

2.
A laboratory testing that simulates the mechanisms of a geosynthetic-reinforced layer was used to assess the impact of rainwater infiltration on reinforcement loads and strains in mechanically stabilized earth (MSE) walls. The testing device allows measuring loads transferred from a backfill soil subjected simultaneously to surcharge loading and controlled irrigation. Load-strain responses of geosynthetic-reinforced layers constructed with three different geosynthetics under a moderate rainfall are related to suction captured along the depth of reinforced layers. Results show infiltration leading to increases on strains and tensile loads mobilized by reinforcements. Rates of increases of both parameters were found to be dependent of global suction, geosynthetic stiffness and hydraulic properties. In addition, increases in water content at soil-geotextile interfaces due to capillary breaks also had a significant effect on mobilized loads. The loss of interaction due to the interface wetting was observed to affect the stress transference from soil to geosynthetic reinforcement. An approach suggested for calculation of lateral earth pressures in unsaturated GMSE walls under working stress conditions and subjected to rainfall infiltration demonstrated a reasonable agreement with experimental data.  相似文献   

3.
加筋形式对桩承式路堤工作性状影响的试验研究   总被引:1,自引:0,他引:1  
费康  陈毅  王军军 《岩土工程学报》2012,34(12):2312-2317
对无加筋和采用不同加筋材料、加筋层数下桩承式路堤的工作性状进行了三维模型试验研究,侧重分析了桩土应力比、应力折减系数、填土中竖向应力分布、地基沉降等内容。结果表明加筋材料的设置有利于荷载向桩顶的转移,可有效减小沉降,但不同加筋形式下桩承式路堤的工作性状有所不同。使用单层或双层土工布时,路堤的荷载传递机理主要是填土的土拱效应和加筋材料的拉膜效应,但拉膜效应发挥相对较晚。使用双层格栅时,加筋材料与周围砂土形成半刚性平台。单层格栅的作用介于两者之间。试验结果与常规拉膜效应设计方法的对比表明,若假设荷载只由相邻桩间的加筋材料条带承担,计算的拉力将偏大,过于保守。  相似文献   

4.
The selection of geosynthetic reinforcements in the design of geosynthetic-reinforced soil (GRS) retaining walls has been based on the requirement on the long-term strength. However, the mobilized loads in the reinforcements are related to both the reinforcement stiffness and soil deformation, and the desired factor of safety may not exist in the earth structure if they are not properly considered. Therefore, it is also important to take into account the long-term reinforcement stiffness when designing GRS retaining walls. In this study, a simplistic analytical method is proposed to determine the required reinforcement stiffness with given factor of safety on the backfill soil. The method takes into account soil-reinforcement interaction, nonlinear stress-strain behavior of soil, and soil dilatancy. The reinforcement strains predicted by the proposed method were compared to those analyzed by validated nonlinear Finite Element analyses, and close agreement was obtained.  相似文献   

5.
Present study estimates seismic active earth pressure on the reinforced retaining wall by combining the lower bound finite element limit analysis and the modified Pseudo-dynamic method. A series of parametric analyses are performed by varying seismic acceleration coefficient, time period of seismic loading, soil friction and dilation angles, reinforcement spacing, length of reinforcement, soil-reinforcement interface, damping ratio of soil, soil-wall interface, wall inclination, and ground inclination. Maximum active earth pressure is exerted when natural time period of reinforced soil matches with the time period of an earthquake. Reinforcement is found to be effective in terms of reducing active earth pressure significantly on the wall subjected to seismic loading. Effectiveness of reinforcement depends upon two factors, namely vertical spacing and soil-reinforcement interface friction angle. For relatively smaller reinforcement spacing, soil-reinforcement behaves like a composite block, which helps to constraint stresses within a small area behind the wall. Maximum tensile resistance is developed when fully rough interface condition is assumed between soil and reinforcement layer. Failure patterns are provided to understand the behaviour of reinforced retaining wall under different time of seismic loading.  相似文献   

6.
筋箍碎石桩复合地基桩–土界面摩擦特性对其荷载传递机理极为重要。首先通过室内大型直剪试验,研究了法向应力、软土含水率、碎石料相对密实度、筋材设置等因素对筋箍碎石桩桩–土界面摩擦特性的影响。在此基础上,采用离散元方法分析了筋材设置、筋材开孔率、筋材抗拉刚度等因素对界面摩擦特性的影响。室内试验及数值分析结果表明:桩土界面抗剪强度随法向应力、碎石料相对密实度、筋材开孔率、筋材抗拉刚度的增大而增大,随软土含水率的增加而降低;界面摩擦系数则随法向应力、软土含水率的增大而减小,随碎石料相对密实度、筋材开孔率的增大而提高,筋材抗拉刚度对其影响较小。  相似文献   

7.
 为了研究台阶式加筋土挡墙平台宽度对下墙墙体垂直应力大小及分布的影响,进行3组不同平台宽度的台阶式加筋土挡墙室内模型试验。试验结果表明:台阶式加筋土挡墙基底垂直应力随着填土高度的增加而增大,最大值出现在墙面板附近;随着墙间台阶宽度的增加,基底垂直应力沿筋长的分布形式由“V”字形逐渐过渡到倒“S”形;过大的台阶宽度对双级加筋土挡墙基底垂直应力的减载效果不明显;修正的FHWA方法和修正的Gray弹性解方法可较为准确计算基底垂直应力;随着墙顶荷载加载位置距墙面板距离的增加,基底垂直应力逐渐减小;墙顶施加荷载后下墙筋材中后部垂直应力增长较大,而拉筋始端垂直应力变化较小。  相似文献   

8.
The design methods used for soil mass structures, such as mechanically stabilised earth (MSE) structures, are based on soil/reinforcement anchorage models which require the knowledge of the soil/reinforcement interface friction capacity. However, different types of reinforcements are used in these structures and present different behaviour. This study concerns two types of strips reinforcements. The first one is metallic and is classically designed using elasto-plastic models (21 and 22). The second type is geosynthetic. The classical anchorage models do not take into account the extensibility of this materiel and do not reproduce its complex behaviour.  相似文献   

9.
This research was performed to investigate the behavior of geosynthetic-reinforced sandy soil foundations and to study the effect of different parameters contributing to their performance using laboratory model tests. The parameters investigated in this study included top layer spacing, number of reinforcement layers, vertical spacing between layers, tensile modulus and type of geosynthetic reinforcement, embedment depth, and shape of footing. The effect of geosynthetic reinforcement on the vertical stress distribution in the sand and the strain distribution along the reinforcement were also investigated. The test results demonstrated the potential benefit of using geosynthetic-reinforced sand foundations. The test results also showed that the reinforcement configuration/layout has a very significant effect on the behavior of reinforced sand foundation. With two or more layers of reinforcement, the settlement can be reduced by 20% at all footing pressure levels. Sand reinforced by the composite of geogrid and geotextile performed better than those reinforced by geogrid or geotextile alone. The inclusion of reinforcement can redistribute the applied footing load to a more uniform pattern, hence reducing the stress concentration, which will result reduced settlement. Finally, the results of model tests were compared with the analytical solution developed by the authors in previous studies; and the analytical solution gave a good predication of the experimental results of footing on geosynthetic reinforced sand.  相似文献   

10.
单层立体加筋砂土性状的三轴试验研究   总被引:15,自引:2,他引:15       下载免费PDF全文
针对加筋土中传统的筋材布置特点,提出了立体加筋土的概念,并设计了采用轴对称布置的单层立体加筋砂土的试验方案,进行了48组镀锌铁皮和橡胶板两种筋材的单层立体加筋砂土的室内三轴试验,探讨了不同立体加筋方式、不同围压作用下应力–应变及强度变化规律。通过试验结果对比,分析了立体加筋砂土同传统水平加筋砂土之间应力–应变关系和强度指标的差异规律,竖向筋高度对立体加筋砂土的强度影响,单侧和双侧布置竖向筋材等两种布筋方式对立体加筋砂土强度的影响,以及不同变形模量的加筋材料对立体加筋土强度的影响。试验结果表明:立体加筋砂土的强度随竖向筋的高度增加而增大;立体加筋不仅能提高砂土的粘聚力,同时也能增加砂土的内摩擦角,尤其是双侧立体加筋砂土;在竖向筋总高度相同时,双侧立体加筋形式比单侧立体加筋能更有效提高砂土的强度。  相似文献   

11.
Soil arching and tensioned membrane effects are two main load transfer mechanisms for geosynthetic-reinforced pile-supported (GRPS) embankments over soft soils or voids. Evidences show that the tensioned membrane effect interacts with the soil arching effect. To investigate the soil arching evolution under different geosynthetic reinforcement stiffness and embankment height, a series of discrete element method (DEM) simulations of GRPS embankments were carried out based on physical model tests. The results indicate that the deformation pattern in the GRPS embankments changed from a concentric ellipse arch pattern to an equal settlement pattern with the increase of the embankment height. High stiffness geosynthetic hindered the development of soil arching and required more subsoil settlement to enable the development of maximum soil arching. However, soil arching in the GRPS embankments with low stiffness reinforcement degraded after reaching maximum soil arching. Appropriate stiffness reinforcement ensured the development and stability of maximum soil arching. According to the stress states on the pile top, a concentric ellipse soil arch model is proposed in this paper to describe the soil arching behavior in the GRPS embankments over voids. The predicted heights of soil arches and load efficacies on the piles agreed well with the DEM simulations and the test results from the literature.  相似文献   

12.
Large-scale laboratory equipment was developed to assess interaction between soil and 3-D honeycomb shaped geocell reinforcement under normal and interface shear stress. An understanding of this interaction is vital in assessing mechanical behavior of geocell-reinforced soil mass. Specifically, the equipment allows evaluation of the load transfer mechanism with the measurements of strains, displacements and loads, including friction and passive resistance on the side surfaces and inside the cells of geocell reinforcement. Additionally, the device visually presents sequence of movement response of each reinforcing cell in the direction of the pulling force, thereby showing the contribution of each cell to the total capacity. Overall, it is concluded that the pullout capacity of geocell reinforcement in cohesionless soils is limited to the seam peel strength at junctions of longitudinal and transverse of geocell strips, which creates the cells in layout of geocell reinforcement. Finally, a theoretical approach was established to predict the pullout capacity of geocell-reinforced soil mass.  相似文献   

13.
In the recent past, the wraparound geosynthetic reinforcement technique has been recommended for constructing the geosynthetic-reinforced soil foundations. This paper presents the development of an analytical expression for estimating the ultimate bearing capacity of strip footing resting on soil bed reinforced with geosynthetic reinforcement having the wraparound ends. The wraparound ends of the geosynthetic reinforcement are considered to provide the shearing resistance at the soil-geosynthetic interface as well as the passive resistance due to confinement of soil by the geosynthetic reinforcement. The values of ultimate load-bearing capacity determined by using the developed analytical expression agree well with the model footing load test values as reported in the literature.  相似文献   

14.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   

15.
For design of a geosynthetic-reinforced pile-supported (GRPS) embankment over soft soil, the methods used to calculate strains in geosynthetic reinforcement at a vertical stress were mostly developed based on a plane-strain or two-dimensional (2-D) condition or a strip between two pile caps. These 2-D-based methods cannot accurately predict the strain of geosynthetic reinforcement under a three-dimensional (3-D) condition. In this paper, a series of numerical models were established to compare the maximum strains and vertical deflections (also called sags) of geosynthetic reinforcement under the 2-D and 3-D conditions, considering the following influence factors: soil support, cap shape and pattern, and a cushion layer between cap and reinforcement. The numerical results show that the maximum strain in the geosynthetic reinforcement decreased with an increase of the modulus of subgrade reaction. The 2-D model underestimated the maximum strain and sag in the geosynthetic reinforcement as compared with the 3-D model. The cap shape and pattern had significant influences on the maximum strains in the geosynthetic reinforcements. An empirical method involving the geometric factors of cap shape and pattern, and the soil support was developed to convert the calculated strains of geosynthetic reinforcement in piled embankments under the 2-D condition to those under the 3-D condition and verified through a comparison with the results in the literature.  相似文献   

16.
This paper examines the effect of the mobilized reinforcement tension within reinforced soil slope at a different level of soil-geosynthetic interaction. The mobilized reinforcement tension is assumed, in most design methods for the internal stability of reinforced slopes, to be equal to mobilized soil forces computed using a limit equilibrium method. However, comparison with the reinforcement tension force measured in the field has shown that this approach is conservative. This paper examines the effects of the soil-reinforcement interaction coefficient on the tensile redistribution of geosynthetics. The modified process of Bishop Method of slope stability analysis is used to locate the critical slip surface and to calculate the mobilized reinforcement tensile force. The reinforcement forces obtained from field data and on centrifuge model test results for a reinforced slope problem are used to examine the relationship between mobilized reinforcement tensile force and mobilized soil shear strength.  相似文献   

17.
陈建峰 《岩土工程学报》2014,36(9):1640-1647
墙趾约束条件对硬质墙面加筋土挡墙性状影响显著。基于混凝土模块与级配碎石土直剪试验剪应力和剪切位移关系曲线,建立一非线性双曲线界面模型,并通过FLAC有限差分程序分析刚性地基上3.6 m高聚丙烯土工格栅加筋土挡墙在工作应力下的墙趾界面剪切特性、墙面和墙趾位移以及墙趾和筋材承担的荷载,得出在挡墙填筑过程中墙趾界面剪应力-剪切位移曲线呈上凹型;墙趾界面上的正应力、界面剪切刚度及墙趾和筋材承担的荷载随挡墙填筑高度而增大,在挡墙填筑至3.6 m时,其界面正应力是墙面模块自重应力的1.7倍,墙趾承担约87%的作用在墙背上的总水平荷载;在挡墙填筑初期由于界面剪切刚度较小,墙面和墙趾位移增大显著。较挡墙模型试验及以往数值模拟采用的墙趾恒定约束刚度,论文采用的双曲线界面模型可更好地反映挡墙墙趾与地基土真实剪切性状。  相似文献   

18.
采用FALC3D对土工格栅加筋土地基载荷试验进行了进一步的数值模拟分析。根据计算结果,针对原型试验中难以量测的试坑变形及筋土界面摩阻力分布特征进行了讨论。利用数值模拟技术的优势,求解加筋地基的应变场,研究了加筋地基的破坏模式。结果表明:在竖向荷载作用下,试坑会发生侧向位移,通过加筋能有效减小试坑的侧向位移;筋土界面摩阻力的分布与筋土之间的相对位移直接相关;加筋地基的破坏机构因筋材的存在而发生改变,“深基础”效应以及“扩散层”效应都是加筋地基的增强机理,但地基的破坏模式随筋材的布置形式改变而有所不同。  相似文献   

19.
A mechanically stabilized earth (MSE) wall behaves as a flexible coherent block able to sustain significant loading and deformation due to the interaction between the backfill material and the reinforcement elements. The internal behaviour of a reinforced soil mass depends on a number of factors, including the soil, the reinforcement and the soil/structure interaction and represents a complex interaction sol/structure problem. The use of parameters determined from experimental studies should allow more accurate modelling of the behaviour of the MSE structures.In this article, a reference MSE wall is modelled from two points of view: serviceability limit state “SLS” and ultimate limit state “ULS”. The construction of the wall is simulated in several stages and the soil/interface parameters are back analysed from pullout tests. An extensive parametric study is set up and permits to highlight the influence of the soil, the reinforcement and the soil/structure parameters. The behaviour of MSE walls with several geosynthetic straps is compared with the metallic one. Several constitutive models with an increasing complexity have been used and compared.The results obtained from stress-deformation analyses are presented and compared. The use of geosynthetic straps induces more deformation of the wall but a higher safety factor. To design theses walls the important parameters are: the soil friction, the cohesion, the interface shear stiffness and the strip elastic modulus.It is shown that for wall construction that involves static loading conditions, the modified Duncan-Chang model is a good compromise but induces slightly lower strip tensile forces due to the fact that it do not take into account of dilatancy before failure.  相似文献   

20.
Reinforcing elements embedded within soil mass improve stabilization through a load transfer mechanism between the soil and the reinforcement. Geogrids are a type of geosynthetic frequently used for soil reinforcement, consisting of equally spaced longitudinal and transverse ribs. Under pullout conditions, the longitudinal ribs are responsible for tensile resistance, while transverse ribs contribute to a passive resistance. This paper describes a new analytical model capable of reproducing both load transfer and displacement mechanisms on the geogrid length, under pullout conditions. The model subdivides the geogrid into rheological units, composed by friction/adhesion and spring elements, mounted in line. Friction/adhesion elements respond to the shear component mobilized at the soil–geogrid interface. Spring elements respond to the geogrid's tensile elongation. Model parameters are obtained through tensile strength tests on geogrids and conventional direct shear tests on soil specimens. The need for instrumented pullout tests becomes therefore eliminated. Results predicted from this new model were compared to instrumented pullout test data from two types of geogrids, under various confining stress levels. The results revealed that the new model is capable of reasonably predicting load and displacement distributions along the geogrid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号