首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Lake Erie is a classic case of development, recovery from, and return to eutrophication, hypoxia, and harmful algal blooms. Forecast models are used annually to predict bloom intensity for the whole Western Lake Erie Basin, but do not necessarily reflect nearshore conditions or regional variations, which are important for local stakeholders. In this study we: 1) developed relationships between observed whole basin and nearshore bloom sizes, and 2) updated and extended a Bayesian seasonal bloom forecast model to provide new regional predictions. The western basin was subdivided into 5 km near-shore regions, and bloom start date, size, and intensity were quantified with MODIS-derived images of chlorophyll concentrations for July–October 2002–2016 for each subdivision and for the entire basin. While bloom severity within each subdivision is temporally and spatially unique, it increased over the study period in each subdivision. The models for the 5 km subdivisions explained between 83 and 95% of variability between regional sizes and whole bloom size for US subdivisions and 51% for the Canadian subdivision. By linking predictive basin-wide models to regional regression estimates, we are now able to better predict potential bloom impacts at scales and in specific areas that are vital to the economic well-being of the region and allow for better management responses.  相似文献   

2.
Lake Erie has experienced dramatic changes in water quality over the past several decades requiring extensive monitoring to assess effectiveness of adaptive management strategies. Remote sensing offers a unique potential to provide synoptic monitoring at daily time scales complementing in-situ sampling activities occurring in Lake Erie. Bio-optical remote sensing algorithms require knowledge about the inherent optical properties (IOPs) of the water for parameterization to produce robust water quality products. This study reports new IOP and apparent optical property (AOP) datasets for western Lake Erie that encapsulate the May–October period for 2015 and 2016 at weekly sampling intervals. Previously reported IOP and AOP observations have been temporally limited and have not assessed statistical differences between IOPs over spatial and temporal gradients. The objective of this study is to assess trends in IOPs over variable spatial and temporal scales. Large spatio-temporal variability in IOPs was observed between 2015 and 2016 likely due to the difference in the extent and duration of mid-summer cyanobacteria blooms. Differences in the seasonal trends of the specific phytoplankton absorption coefficient between 2015 and 2016 suggest differing algal assemblages between the years. Other IOP variables, including chromophoric, dissolved organic matter (CDOM) and beam attenuation spectral slopes, suggest variability is influenced by river discharge and sediment re-suspension. The datasets presented in this study show how these IOPs and AOPs change over a season and between years, and are useful in advancing the applicability and robustness of remote sensing methods to retrieve water quality information in western Lake Erie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号