首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanical properties and amorphization response of a carbon nanotube (5 wt.%) boron carbide (CNT-B4C) composite with 1 μm grain size are investigated, and compared to those of coarse-grained (10 μm grain size) and ultrafine-grained (0.3 μm grain size) monolithic boron carbides. The quasi-static and dynamic uniaxial compressive strengths for CNT-B4C were statistically the same as those of the ultrafine-grained ceramic and higher than the coarse-grained material, contradicting the expected grain size hierarchy (Hall-Petch-type relationship). Addition of CNTs to B4C resulted in decreased quasi-static hardness compared to the large grain size material; however, dynamic hardness was substantially improved compared to quasi-static values. CNT pullout and crack bridging were observed to be possible toughening mechanisms. Finally, Raman spectroscopy was used to quantify amorphization, and it was concluded that addition of CNTs to boron carbide does not alter the propensity for amorphization, but does improve mechanical properties by enhanced toughening.  相似文献   

2.
The SiCf/Si3N4 composite with low–high–low permittivity sandwich structure was designed for high-temperature electromagnetic (EM) wave absorption and mechanical stability. The SiCf/Si3N4 possessed the remarkable mechanical properties at room temperature (the flexural strength is 357 ± 16 MPa and the fracture toughness is 10.8 ± 1.7 MPa m1/2) for the strong fiber strength, moderate interface bonding strength and uniform matrix. Furthermore, the retention rate is as high as 80% at 800 °C. The A/B/C nanostructure and the sandwich meta-structure endowed the SiCf/Si3N4 with an excellent EM absorbing property at room temperature. The SiCf/Si3N4 still absorbed 75% of the incident EM waves energy in X and Ku bands when the temperature increases up to 600 °C, which is only 6% lower than that at room temperature, for the partial compensation of the decreased interfacial polarization loss for the increased conductivity loss and dipole polarization loss.  相似文献   

3.
In-situ synchrotron X-ray microtomography and acoustic emission (AE) were combined to study the behavior of ceramic matrix composite laminates subjected to in-plane tensile or flexural loading at room temperature. A detailed characterization of the initiation and progression of two key damage modes (matrix cracking and fiber breaks) is obtained from microtomography, and the relationship between damage and AE is directly observed. A graphical representation of AE data, which has potential for real-time use, is employed to reveal differences in damage progression due to fiber architecture or loading mode. In addition, strong empirical relationships are observed between matrix crack area and AE energy, as well as between fiber breaks and number of AE events.  相似文献   

4.
《Ceramics International》2017,43(12):8873-8878
Film formed by carbon nanotubes is usually called carbon nanotube film (CNTf). In the present study, CNTf fabricated by floating catalyst method was used to prepare CNTf/SiC ceramic matrix composites by chemical vapor infiltration (CVI). Mechanical and electrical properties of the resulting CNTf/SiC composites with different CVI cycles were investigated and discussed, and the results revealed that the CNTf has a good adaptability to CVI method. Tensile test demonstrated an excellent mechanical performance of the composites with highest tensile strength of 646 MPa after 2 CVI cycles, and the strength has a decline after 3 CVI cycles for an excessively dense matrix. While, the elastic modulus of the composite increased with the CVI cycles and reached 301 GPa after 3 CVI cycles. Tensile fracture morphologies of the composites were analyzed by scanning electron microscope to study the performance change laws with the CVI cycles. With SiC ceramic matrix infiltrated into the CNTf, enhanced electrical conductivity of the CNTf/SiC composite compared to pure CNTf was also obtained, from 368 S/cm to 588 S/cm. Conductivity of the SiC matrix with free carbon forming in the CVI process was considered as the reason.  相似文献   

5.
《Ceramics International》2017,43(16):13276-13281
Chemical vapor infiltration (CVI) is a prominent process for fabricating carbon fiber/silicon carbide (C/SiC) composites. However, the preparation of enclosed-structure or thick-section C/SiC composites/components with CVI remains a challenge, since the difficulty of densification increases. Here, machining-aided CVI (MACVI) is designed, in which infiltration-assisting holes are utilized (machined) to increase matrix deposition. To validate the approach, thick-section (10 mm thick) C/SiC composites were fabricated by MACVI. Porosity analysis and microstructure characterization were performed on the fabricated MACVI C/SiC composites and their CVI counterparts, showing a density increase up to 12.7% and a porosity decrease up to 32.1%. The mechanical behavior of the fabricated MACVI C/SiC composites was characterized, showing an increase of flexural strength by a factor of 1.72 at most. Besides, the toughness also largely increases. Both the porosity decrease and the strength and toughness increase brought by MACVI demonstrate its effectiveness for fabricating stronger and tougher enclosed-structure or thick-section ceramic matrix composites/components.  相似文献   

6.
Novel Nextel? 610 fiber reinforced silica (N610f/SiO2) composites were fabricated via sol-gel process at a sintering temperature range of 800–1200?°C. The sintering-temperature dependent microstructures and mechanical properties of the N610f/SiO2 composites were investigated comprehensively by X-ray diffraction, nanoindentation, three-point bending etc. The results suggested a thermally stable Nextel? 610 fiber whose properties were barely degraded after the harsh sol-gel process. A phase transition in the silica matrix was observed at a critical sintering temperature of 1200?°C, which led to a significant increase in the Young's modulus and hardness. Due to the weak fiber/matrix interfacial interaction, the 800?°C and 1000?°C fabricated N610f/SiO2 composites exhibited quasi-ductile fracture behaviors. Specially, the latter possessed the highest flexural strength of ≈ 164.5?MPa among current SiO2-matrix composites reinforced by fibers. The higher sintering-temperature at 1200?°C intensified the SiO2 matrix, but strengthened the interface, thus resulting in a brittle fracture behavior of the N610f/SiO2 composite. Finally, the mechanical properties of this novel composite presented good thermal stability at high temperatures up to 1000?°C.  相似文献   

7.
《Ceramics International》2017,43(8):6180-6186
Graphene oxide (GO) reinforced alumina matrix composites have been fabricated by using graphene oxide synthesized by a modified Hummer's method. Samples were prepared by powder metallurgy and consolidated by Spark Plasma Sintering (SPS). The influence of GO addition on the microstructure and mechanical properties of the composites was investigated. Results show a significant increase (almost 35%) of the fracture toughness for composites containing 0.5 wt% graphene oxide compared to sintered pure alumina. In order to find reasons for this improvement Scanning/Transmission Electron Microscopy (SEM/TEM) observations were carried out. They reveal a good interface between the reinforcement and the matrix as well as such mechanisms like branching, deflection and bridging of crack propagation.  相似文献   

8.
SiC/SiC composites are promising structural candidate materials for various nuclear applications over the wide temperature range of 300–1000 °C. Accordingly, irradiation tolerance over this wide temperature range needs to be understood to ensure the performance of these composites. In this study, neutron irradiation effects on dimensional stability and mechanical properties to high doses (11–44 dpa) at intermediate irradiation temperatures (?600 °C) were evaluated for Hi-Nicalon Type-S or Tyranno-SA3 fiber–reinforced SiC matrix composites produced by chemical vapor infiltration. The influence of various fiber/matrix interfaces, such as a 50–120 nm thick pyrolytic carbon (PyC) monolayer interphase and 70–130 nm thick PyC with a subsequent PyC (?20 nm)/SiC (?100 nm) multilayer, was evaluated and compared with the previous results for a thin-layer PyC (?20 nm)/SiC (?100 nm) multilayer interphase. Four-point flexural tests were conducted to evaluate post-irradiation strength, and SEM and TEM were used to investigate microstructure. Regardless of the fiber type, monolayer composites showed considerable reduction of flexural properties after irradiation to 11–12 dpa at 450–500 °C; and neither type showed the deterioration identified at the same dose level at higher temperatures (>750 °C) in a previous study. After further irradiation to 44 dpa at 590–640 °C, the degradation was enhanced compared with conventional multilayer composites with a PyC thickness of ?20 nm. Multilayer composites have shown comparatively good strength retention for irradiation to ?40 dpa, with moderate mechanical property degradation beginning at 70–100 dpa. Irradiation-induced debonding at the F/M interface was found to be the major cause of deterioration of various composites.  相似文献   

9.
Novel Nextel™ 440 aluminosilicate fiber reinforced SiC matrix composites, with/without chemical vapor deposited carbon interphase were fabricated by polymer derived ceramic process, and they were studied by a combination of micro- and macro- mechanical techniques such as nanoindentation, micropillar splitting, fiber push-in, digital image correction and high temperature three point bend tests. Specifically, micropillar splitting test was firstly employed to measure in-situ the localized fracture toughness. The results revealed that the carbon interphase can effectively hinder the interfacial reactions between Nextel™ 440 fiber and SiC matrix, thus remarkably weakening the composite interfacial shear strength from ∼293 MPa to ∼42 MPa, and enhance the composite fracture toughness from ∼1.8 MPa√m to ∼6.3 MPa√m, respectively. This is mainly a consequence of weak interface that triggers crack deflection at the fiber/interphase interface. Finally, this novel composite showed stable mechanical properties in vacuum at temperature range from 25 °C to 1000 °C.  相似文献   

10.
Properties such as high hardness, low density, and high elastic modulus have made SiC ceramics proper choices for a variety of industrial applications. However, disadvantages such as low sinterability, and low fracture toughness have limited the fabrication of these ceramics. Past researches show that the use of Al2O3-Y2O3 additives play an important role in improving the sinterability and the properties of the composites. The use of oxide, carbide, nitride and boride additives results in improved sinterability, physical and mechanical properties. The investigations show that the microstructure, porosities, amount of additives, reaction of additives with the matrix, grain size and, finally, the sintering temperature are the most important factors affecting the properties of SiC ceramics. In this paper, the effect of using various additives, the sintering temperature and the annealing heat treatment on sinterability, microstructure and properties of the SiC matrix composites fabricated by pressureless sintering method have been investigated.  相似文献   

11.
To improve the mechanical properties of carbon fibers/lithium aluminosilicate (Cf/LAS) composites, Cf/LAS with in-situ grown SiC nanowires (SiCnw-Cf/LAS) were prepared by chemical vapor phase reaction, precursor impregnation, and hot press sintering, consecutively. The effect of multi-scaled reinforcements (micro-scaled Cf and nano-scaled SiCnw) on the mechanical properties was investigated. The phase composition, microstructure and fracture surface of the composites were characterized by XRD, Raman Spectrum, SEM, and TEM. The morphology of SiCnw has a close relation with the content of Si. Microstructure analysis suggests that the growth of SiC nanowires depends on the VLS mechanism. The multi-scale reinforcement formed by Cf and SiCnw can significantly improve the mechanical properties of Cf/LAS. The bending strength of SiCnw-Cf/LAS reaches to 597 MPa, achieving an increase of 19% to Cf/LAS. Moreover, the samples show a maximum fracture toughness of 11.01 MPa m1/2, achieving an increase of 46.4% to Cf/LAS. Through analysis of the fracture surface, the improved mechanical properties could be attributed to the multi-scaled reinforcements by the pull-out and debonding of Cf and SiCnw from the composites.  相似文献   

12.
In the present work, laminar ceramic structures formed by layers of alumina and partially stabilized zirconia were fabricated by water-based tape casting. Rheological, physical and mechanical properties of slurries and laminates were evaluated. The laminates consisted of stacked alumina and zirconia green tapes produced by thermopressing. Pyrolysis was carried out at 450 °C and sintering at 1500 °C. The alumina/zirconia laminates were studied for a better understanding of the formation behavior and crack propagation at the laminate interface. The flexural strength values of laminates depend on the stress state on their surface. The laminates with the highest amount of zirconia layers presented low strength values (6.7 MPa), while the laminates with more alumina layers had a higher strength level (57.7 MPa). This is because these laminates have alumina layers on the surface which are in a state of residual compressive stress.  相似文献   

13.
MAX phases, and particularly Ti3SiC2, are interesting for high temperature applications. The addition of carbon fibers can be used to reduce the density and to modify the properties of the matrix. This work presents the densification and characterization of Ti3SiC2 based composites with short carbon fibers using a fast and simple fabrication approach: dry mixing and densification by Spark Plasma Sintering. Good densification level was obtained below 1400 °C even with a high amount of fibers. The reaction of the fibers with the matrix is limited thanks to the fast processing time and depends on the amount of fibers in the composite. Bending strength at room temperature, between 437 and 120 MPa, is in the range of conventional CMCs with short fibers and according to the resistance of the matrix and the presence of residual porosity. Thermo-mechanical properties of the composites up to 1500 °C are also presented.  相似文献   

14.
Inspired by the unique structures of plant cells, tungsten carbide (WC, cytoderm) coated mesocarbon microbeads (MCMB, cytoplasm) powders were prepared by molten salt synthesis, which were then densified by spark-plasma sintering to obtain the biomimetic cellular-structured MCMB@WC composites. The in-situ formed WC cytoderm significantly contributed to the densification of the composites. Additionally, the formation of periodically arranged hard-soft architecture and perfect MCMB/WC interface bonding enhanced the mechanical properties significantly. The composite with WC concentration of 53 vol% exhibited the maximal bending strength and fracture toughness of 446 MPa and 4.48 MPa m1/2, respectively. The developed biomimetic ceramic/graphite composites with excellent mechanical properties are expected to be applied in aerospace and other industries.  相似文献   

15.
The Cf/Ti3SiC2 composites were fabricated through spark plasma sintering (SPS) and hot isostatic pressing (HIP), TiC coated Cf and Ti3SiC2 powder were used as starting materials. The improved fracture toughness (KIC) and Vickers hardness (HV1) of the TiC coated Cf/Ti3SiC2 composite fabricated by SPS were 7.59 MPa·m1/2 and 7.28 GPa. On this foundation, taking the advantage of better sintering process of HIP, the highest KIC and HV1 achieved 8.32 MPa·m1/2 and 9.24 GPa with fiber content of 10 vol%, which increased by 40% and 65% compared with that of monolithic Ti3SiC2. The reasonable control of reactive interface is the main factor for the improved mechanical properties of the composites, the TiC coating effectively protected the fiber structure from interfacial reaction compared with that of the non-coated Cf/Ti3SiC2. Meanwhile, the artificially designed and weakly bonded TiC coated Cf can fully exert the toughening mechanisms like fiber pull-out and debonding.  相似文献   

16.
The in situ silicon nitride nanowires reinforced porous silicon nitride (SNNWs/SN) composites were fabricated via gelcasting followed by pressureless sintering. SNNWs were well distributed in the porous silicon nitride matrix. The tip-body appearance suggested a VLS growth mechanism. The flexural strength and elastic modulus of the prepared composites can achieve 84.3?±?3.9?MPa and 23.3?±?2.0?GPa respectively (25?°C), while the corresponding porosity was 40.7?vol.%. Remarkably, the strength retention rate of the composites at 1400?°C was up to 66.1%. This is due to the excellent thermal stability of SNNWs and silicon nitride matrix. Also, the fracture toughness of the composites was improved to ~42% larger than pure porous silicon nitride ceramics because of the bridging effect of the NWs and the interlocking effect of β-Si3N4 crystals. In addition, a good thermal shock resistance and dielectric properties were indicated. The good overall performance made SNNWs/SN composites promising candidate for advanced high-temperature applications.  相似文献   

17.
Carbon fiber reinforced silicon carbide (C/SiC) composites are enabling materials for components working in ultra-high-temperature extreme environments. However, their mechanical properties reported in the literature are mainly limited to room and moderate temperatures. In this work, an ultra-high-temperature testing method for the mechanical properties of materials in inert atmosphere is presented based on the induction heating technology. The flexural properties of a 2D plain-weave C/SiC are studied up to 2600 °C in inert atmosphere for the first time. The deformation characteristics and failure mechanisms at elevated temperatures are gained. Theoretical models for the high-temperature Young’s modulus and tensile strength of 2D ceramic matrix composites are then developed based on the mechanical mechanisms revealed in the experiments. The factors contributing to the mechanical behaviors of C/SiC at elevated temperatures are thus characterized quantitatively. The results provide significant understanding of the mechanical behaviors of C/SiC under ultra-high-temperature extreme environment conditions.  相似文献   

18.
SiCf/SiC composites with silicon oxycarbide (SiOC) interphase were successfully prepared using silicone resin as interphase precursor for dip-coating process and polycarbosilane as matrix precursor for PIP process assisted with hot mold pressing. The effects of SiOC interphase on mechanical and dielectric properties were investigated. XRD and Raman spectrum results show that SiOC interphase is composed of silicon oxycarbide and free carbon with a relatively low crystalline degree. The surface morphology of SiC fibers with SiOC interphase is smooth and homogeneous observed by SEM. The flexural strength and failure displacement of SiCf/SiC composites with SiOC interphase vary with the thickness of interphase and the maximum value of flexural strength is 289 MPa with a failure displacement of 0.39 mm when the thickness of SiOC interphase is 0.25 µm. The complex permittivity of the composites increases from 8.8-i5.7 to 9.8-i8.3 with the interphase thicker.  相似文献   

19.
Ti matrix composites reinforced with 0.6?wt% reduced graphene oxide (rGO) sheets were fabricated using spark plasma sintering (SPS) technology at different sintering temperatures from 800?°C to 1100?°C. Effects of SPS sintering temperature on microstructural evolution and mechanical properties of rGO/Ti composites were studied. Results showed that with an increase in the sintering temperature, the relative density and densification of the composites were improved. The Ti grains were apparently refined owing to the presence of rGO. The optimum sintering temperature was found to be 1000?°C with a duration of 5?min under a pressure of 45?MPa in vacuum, and the structure of rGO was retained. At the same time, the reaction between Ti matrix and rGO at such high sintering temperatures resulted in uniform distribution of micro/nano TiC particle inside the rGO/Ti composites. The sintered rGO/Ti composites exhibited the best mechanical properties at the sintering temperature of 1000?°C, obtaining the values of micro-hardness, ultimate tensile strength, 0.2% yield strength of 224 HV, 535?MPa and 446?MPa, respectively. These are much higher than the composites sintered at the temperature of 900?°C. The fracture mode of the composites was found to change from a predominate trans-granular mode at low sintering temperatures to a ductile fracture mode with quasi-cleavage at higher temperatures, which is consistent with the theoretical calculations.  相似文献   

20.
The effect of reinforcing boron nitride nanosheets (BNNSs) on the mechanical properties of an amorphous borosilicate glass (BS) matrix was studied. The BNNSs were prepared using liquid exfoliation method and characterised by transmission electron microscopy, scanning electron microscopy and X-ray diffraction (XRD) analysis. The average length was ~0.5?μm, and thickness of the nanosheets was between 4 and 30 layers. These BNNSs were used to prepare BS-BNNS composite with different loading concentrations of 1, 2.5 and 5 mass-% (i.e. 1.395, 3.705 and 7.32 vol.-%). Spark plasma sintering (SPS) was used to densify these composites to avoid structural damages to the BNNSs and/or crystallisation within the composite sample during high temperature processing. The BNNSs were found to be evenly distributed in the composites matrix and were found to be aligned in an orientation perpendicular to the direction of the applied force in SPS. The mechanical properties including fracture toughness, flexural strength and elastic modulus were measured. Both fracture toughness and flexural strength increased linearly with increasing concentration of BNNSs in BS glass. There was an enhancement of ~45% in the fracture toughness (1.10?MPa.m1/2) as well as flexural strength (118.82?MPa) with the addition of only 5 mass-% loading of BNNSs compared to BS glass (0.76?MPa.m1/2; 82.16?MPa). The toughening mechanisms developed in the composites because of the reinforcement of BNNSs were thoroughly investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号