首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
High energy density and high thermal stability of energy-storage properties (ESP) under low electric fields are extremely crucial for the application of dielectric ceramics in miniaturized equipment. In present work, we use a composition-optimization approach to break the long-range ferroelectric order and modulate polar nanoregions (PNRs) in the local structure of (1-x)[0.7(Na0.5Bi0.5)TiO3-0.3(Sr0.7Bi0.2)TiO3]-xBi(Mg0.5Ti0.5)O3 system. The large Pmax value is maintained due to the existence of Bi ions in both the matrix and dopants. As a result, a high Wrec of 3.03 J/cm3 together with a moderate η of 79.5 % was obtained in x = 0.05 sample at a low electric field of 200 kV/cm. Meanwhile, the high Wrec (2.41–2.52 J/cm3) and excellent thermal stability of ESP (Wrec varying less than 4.3 % and η > 90 %) from 50 °C to 200 °C at 150 kV/cm were also observed. The current system will be a promising candidate in energy-storage capacitor applications under low-fields and high-temperature.  相似文献   

2.
SnO2 doped Sr0.6(Na0.5Bi0.5)0.4TiO3 (NBT-ST) ceramics were prepared by a conventional solid-state reaction method. Their phase structures, microstructures and electrical properties were characterized in details. It is found that SnO2 doping could increase the lattice parameters, density and average grain size. A suitable amount of SnO2 can improve dielectric properties, and affect the relaxor behavior of the NBT-ST matrix, thereby it can effectively reduce the energy loss and optimize the energy storage performance. Furthermore, the energy storage properties are improved with SnO2 doping. Especially, the 1 at. % SnO2 doped NBT-ST achieves a high recoverable energy density of 2.35 J/cm3, which is mainly attributed to large maximum polarization of 43.2 μC/cm2, small remnant polarization of 5.83 μC/cm2 and high breakdown strength of 180 kV/cm. Also, relatively good temperature stability for dielectric performance and excellent fatigue resistance are observed in this composition. These properties are attractive for lead-free energy storage applications.  相似文献   

3.
Development of lead-free dielectric capacitors with high recoverable energy storage density (Wrec), large energy storage efficiency (η), and wide usage temperature range are in high demanded for pulse power systems. Herein, we realized the enhancement of energy storage properties [high Wrec = 3.76 J/cm3, large η = 78.80 %, and broad operating temperature range (20?180 °C)] in lead-free Na0.5Bi0.5TiO3 (BNT)-based relaxor ferroelectrics via component regulation. Excellent energy storage properties mainly originate from suppressing early polarization saturation and improving dielectric breakdown strength (Eb). Domain evolution on the nanoscale offers robust support to suppression of early polarization saturation. The enhancement of Eb can be derived from the contribution of the Mg-rich phase, which is also corroborative via first-principles calculation on basis of density functional theory (DFT). We believe that these findings in this work may provide a practicable guideline to build new lead-free ceramics for electrical energy storage applications.  相似文献   

4.
Sr0.7Bi0.2TiO3 (SBT) was introduced into Bi0.5Na0.5TiO3 (BNT) via a standard solid-state route to modulate its relaxation behaviour and energy storage performance. With increasing SBT content, the perovskite structure of BNT transforms from a rhombohedral phase to a weakly polarized pseudo-cubic phase, and the relaxation behaviour is enhanced. In particular, the EDBS is improved from 120 kV/cm of BNT to 160 kV/cm of 0.6BNT-0.4SBT, which displays a large recoverable energy storage density (Wrec = 2.20 J/cm3), implying a large potential ability of energy storage for the 0.6BNT-0.4SBT ceramic. Moreover, both dielectric properties (28–326 °C) and energy storage properties (20–140 °C) exhibit a good thermal stability for the same 0.6BNT-0.4SBT composition. These characteristics suggest 0.6BNT-0.4SBT ceramic could be a promising candidate to be applied in a pulse power system over a broad temperature range.  相似文献   

5.
In this work, the crystalline phase, domain structure, and electrical properties of [Bi0.5(Na0.84K0.16)0.5]0.96Sr0.04Ti1-xNbxO3 (x = 0.010–0.030) ceramics are investigated. Increasing the Nb content induces the phase transition from coexistent rhombohedral and tetragonal phases to a single pseudo-cubic phase, and the lamellar ferroelectric domains evolve into polar nanoregions. Decreased ferroelectric-to-relaxor transition temperature and enhanced frequency dispersion are found in the temperature-dependent dielectric constant and loss, implying a transition from the non-ergodic to ergodic relaxor state. The Nb substitution significantly degrades the long-range ferroelectric order with sharply decreased piezoelectric coefficients from ? 140 to ? 1 pC/N. However, a large strain of 0.32% at 5 kV/mm (normalized strain of 640 pm/V) is obtained around the critical composition of x = 0.0225. The composition of x = 0.030 shows good temperature insensitivity of the strain response, characterized by 308 pm/V with less than 15% reduction from 25 °C to 125 °C.  相似文献   

6.
The ceramic capacitors with excellent energy storage properties and wide operating temperature are the main challenges in power system applications. Here, the lead-free (1-x)Bi0.5Na0.5TiO3-xCaTiO3 (abbreviated as BNT-xCT) ceramics were synthesized through solid-state reaction method. The introduction of CT reduced the temperature of permittivity peak of BNT ceramic, guaranteeing excellent thermal stability over a wide temperature range of −100 ∼ 136°C. Meanwhile, the long-range order structure of BNT was destructed by structural distortion, and the relaxor behavior was enhanced after doping CT. Moreover, the direct current breakdown strength was improved from 203 to 455 kV/cm, and the high recoverable energy density (Wrec ∼ 2.74 J/cm3) with high efficiency (η ∼ 91%) was achieved for BNT-0.25CT ceramic, along with a fast discharge speed (t0.9 ∼ 110 ns) superior cycle stability and thermal stability. Those properties enabled a promising practical prospect of BNT-CT ceramics.  相似文献   

7.
Large energy storage density in relaxor ferroelectrics is commonly accompanied with high breakdown strength, which is adverse to the actual dielectric capacitor applications. We demonstrate that such drawback can be effectively resolved by using Sr0.7Bi0.2TiO3 (SBT) to partially replace relaxor ferroelectric 0.76(Bi0.5Na0.5)TiO3-0.24NaNbO3 (BNT-NN-xSBT). In this study, a high recoverable energy storage density (Wrec∼3.12 J/cm3) and favorable efficiency (η∼75.3 %) are achieved in the BNT-NN-0.1SBT ceramic under a low electric field of 200 kV/cm, which is superior to that of most previously reported dielectric ceramics under the same electric field level. Good temperature stability (25−120 °C), moderate frequency dependence (1−500 Hz), and excellent fatigue resistance (up to 105 cycles) are also realized. More interestingly, the indicated ceramics perform high power density (PD∼36.40 MW/cm3) and fast discharge time (t0.9∼0.149 μs) with remarkable temperature endurance. Moreover, of particular significance is that this study offers a feasible guideline to design comprehensive energy storage performance dielectric ceramics for practical applications.  相似文献   

8.
Ceramic-based dielectric capacitor are highly suitable for pulsed power applications due to their high power density and excellent reliability. However, the ultrahigh applied electric field limit their applications in integrated electronic devices. In this work, (1−x){0.96(Bi0.5Na0.5)(Ti0.995Mn0.005)O3-0.04BiAlO3}-xNaNbO3 (BNT-BA-xNN, x = 0, 0.04, 0.08, 0.12, and 0.16) ternary ceramics were designed to achieve excellent energy storage properties. It was found that the introduction of NaNbO3 (NN) effectively increase the difference (ΔP) between Pmax and Pr, resulting in an obvious enhancement of the energy storage properties. High recoverable energy storage density, responsivity, and power density, that is, Wrec = 2.01 J/cm3, ξ Wrec/E = 130.69 J/(kV⋅m2), and PD = 25.59 MW/cm3, accompanied with superior temperature stability were realized at x = 0.14 composition. In addition, the thermal stable dielectric properties of the sample can be prominently improved with increasing NN content. The temperature coefficient of capacitance (TCC) of x = 0.16 composition is lower than 15% over the temperature range from 49°C to 340°C, with a high dielectric permittivity of 1647 and a low dielectric loss (0.0107) at 150°C. All these features show that the BNT-BA-xNN ceramics are promising materials for energy storage application.  相似文献   

9.
In this work, [(Bi1-xLax)0.5Na0.5]0.94Ba0.06(Ti1-5y/4Nby)O3 ceramics have been developed by the dual-substitution of La3+ for Bi3+ and Nb5+ for Ti4+ and prepared by an ordinary sintering technique. All ceramics can be well-sintered at 1200 °C. The addition of La3+ and Nb5+ reduces the grain size and improve the dielectric breakdown strength of the ceramics; moreover, after the introduction of La3+ and Nb5+, the remanent polarization of the ceramics is significantly reduced, while the maximum polarization remains the same large value as that of the ceramic without the doping of La3+ and Nb5+. As a result, high energy storage density and discharge efficiency are achieved at x/y = 0.07/0.02, giving the large storage density of 1.83 J/cm3 and high discharging efficiency of 70%. The present work presents a feasible strategy to develop energy storage materials based on perovskite ferroelectrics by the partial substitutions in the A and B sites.  相似文献   

10.
11.
《Ceramics International》2016,42(15):16798-16803
Na0.5Bi0.5TiO3 (NBT) based oxide-ion conductor ceramics have great potential applications in intermediate-temperature solid oxide fuel cells (SOFCs) and oxygen sensors. Na0.5Bi0.49Ti1−xMgxO3−δ ceramics with x=0, 0.01, 0.02, 0.03, 0.05 and 0.08 were prepared by conventional solid-state reaction. XRD measurement and SEM analysis revealed the formation of pure perovskite structures without secondary phase. MgO doping greatly decreased the sintering temperature and inhibited grain growth. AC impedance spectroscopy measurement was adopted to measure the total conductivity, which was found to increase with MgO doping content ranging from 0 to 3 mol% and subsequently to decrease. High oxygen ionic conductivity σt=0.00629 S/cm was achieved for sample doped with 3 mol% MgO at 600 °C in air atmosphere.  相似文献   

12.
(1-x)[0.8Bi0.5Na0.5TiO3-0.2Bi0.5K0.5TiO3]-xBi(Mn0.5Ti0.5)O3 (x = 0–0.06, BNKMT100x) lead-free ferroelectric ceramics were prepared via solid state reaction method. Bi(Mn0.5Ti0.5)O3 induces a structure transition from rhombohedral-tetragonal morphotropic phases to pseudo-cubic phase. Moreover, the wide range of compositions within x = 0.03–0.055 exhibit large strain of 0.31%–0.41% and electrostrictive coefficient of 0.027–0.041 m4/C2. Especially, at x = 0.04, the large strain and electrostrictive coefficient are nearly temperature-independent in the range of 25–100 °C. The impedance analysis shows the large strain and electrostrictive coefficient originate from polar nanoregions response due to the addition of Bi(Mn0.5Ti0.5)O3.  相似文献   

13.
14.
Unquenched and quenched ceramics of 0.85Na0.5Bi0.5TiO3-0.11K0.5Bi0.5TiO3-0.04BaTiO3 have been prepared, and their crystal structure, temperature-dependent ferro-/piezoelectric properties and domain structure have been comparatively investigated. It is shown that quenching process can significantly improve the ferroelectric-relaxor transition temperature (TF-R), which is 130 °C for unquenched ceramics and 198 °C for quenched one. As the result, the thermal stability of ferro-/piezoelectric properties is highly enhanced. These observations are mainly attributed to the quenching induced stable rhombohedral ferroelectric phase and the defect altered domain evolution. This work may deepen the understanding of the effect of quenching on crystal structure, domain structure and their contributions to thermal stability of NBT-based ceramics.  相似文献   

15.
In this work, (1 − x)(0.94Na0.5Bi0.5TiO3–0.06BaTiO3)–xKTaO3 (x = 0–0.30) ceramics are developed for dielectric capacitor applications. The introduction of KTaO3 from x = 0 to 0.30 increases the tolerance factor t from 0.984 to 1.005 and causes the decrease of ferroelectric rhombohedral phase in the ceramics. Besides, a gradual structural change toward a higher symmetry can be detected, accompanied by the obvious domain refinement. In the aspect of electrical property, the strengthened dielectric relaxation leads to the greatly enhanced thermal stability of dielectric response. The decline in Ts from 98 to −96°C causes a significant widening of the low-temperature region with temperature-stable dielectric constant εr and low dielectric loss tan δ. The x = 0.30 ceramic shows a high εr (25°C) of 1094 with the temperature coefficient of capacitance ≤±15% over −70 to 200°C, which exceeds the X9R standard. Meanwhile, tan δ is less than 0.02 in a wide temperature range of −35 to 300°C. In addition, the ultrafine grain size of 290 nm, large bandgap of 3.22 eV, and high resistance of the x = 0.30 ceramic contribute to its electrical breakdown strength. A linear-like PE loop with the large discharged energy density WD ∼ 3.50 J/cm3 and high energy efficiency η ∼ 90.1% is obtained under 28 kV/mm at room temperature. The thermal stability of the energy storage performance is also satisfactory with the variation of WD less than 15% over −40 to 200°C, and the η is higher than 85%.  相似文献   

16.
(1-x)Na0.5Bi0.5TiO3-xBi(Mg0.5Ti0.5)O3 (NBT-BMT) thick films were designed for achieving large recoverable energy-storage density (Wrec). A large Wrec of 40.4 J/cm3 was detected in the thick film for x = 0.4, which was more than 4 times larger than that of the pure NBT film. The addition of BMT induced slim polarization hysteresis (P-E) loops at room temperature. The slim P-E loops improved the difference between the maximum polarization (Pmax) and the remnant polarization (Pr). Besides, a breakdown strength field (BDS) of 2440 kV/cm was also detected in the thick film for x = 0.4. The high BDS was caused by the reduced leakage current density. Furthermore, the thick film for x = 0.4 possessed superior energy-storage stability under different temperature, frequency and electric-field cycling. In addition, 90% of the pulsed discharge energy density could be released in less than 1100 ns by using a pulsed discharge measurement.  相似文献   

17.
In this study, the phase structure, microstructure and dielectric properties of Bi0.5(Na0.78K0.22)0.5(Ti1-xNbx)O3 lead-free ceramics prepared by traditional solid phase sintering method were studied. The second phase pyrochlore bismuth titanate (Bi2Ti2O7) was produced in the system after introduction of Nb5+. The dielectric constant of the sample (x = 0.03) sintered at 1130 °C at room temperature reached a maximum of 1841, and the dielectric loss was 0.045 minimum. It had been found that the K+ and Nb5+ co-doped Bi0.5Na0.5TiO3 (BNT) lead-free ceramics exhibited outstanding dielectric-temperature stability within 100–400 °C with Tcc ≤±15%. Result of this research provides a valuable reference for application of BNT based capacitors in high temperature field.  相似文献   

18.
In this work, the (1-x)(0.8Na0.5Bi0.5TiO3-0.2K0.5Bi0.5TiO3)-xSrTiO3 (NKBT-xST) incipient piezoelectric ceramics with x = 0–0.07 (0ST-7ST) were prepared by the solid-state reaction method and their structural transformation and electromechanical properties were investigated as a function of ST content. As the ST content increases, the long-range ferroelectric order is disrupted, and the ferroelectric-relaxor phase transition temperature (TFR) shifts to around room temperature for NKBT-5ST ceramics, accompanied by a relatively high electrostrain of 0.3% at 6 kV/mm. The large strain response associated with the vanished ferroelectric properties around TFR can be attributed to the reversible relaxor-ferroelectric phase transition. The electric-field-temperature (E-T) phase diagrams were established, and the transition between the two field-induced long-range ferroelectric states were found to take place via a two-step switching process through an intermediate relaxor state. The threshold electric field to trigger the conversion between ferroelectric state and relaxor state depends strongly on the dynamics of polarization relaxation, which is influenced by temperature and composition.  相似文献   

19.
High temperature dielectrics based on (1-y)[(1-x)Bi0.5Na0.5TiO3-xBiAlO3]-yCaZrO3 (BNT-100xBA-100yCZ) ternary system were designed and prepared. The introduction of BiAlO3 is verified to create defect dipoles (AlTi'-VO??)?, which leads to the increase of the resistivity and decrease of dielectric loss in BNT-100xBA-100yCZ at high temperature. And the introduction of CaZrO3 is helpful to increase the temperature stability of permittivity, which is probably due to an inhomogeneous domain structure. The composition of x=0.09 and y=0.05 has a good overall dielectric properties, with permittivity value of 765 at 25 °C and 1263 at 200 °C, small variance of permittivity (Δε'/ε'200 °C ≤ ±15%) between 133 °C and 500 °C and low dielectric loss (tan ≤ 0.02) in the temperature range of 160 °C ?425 °C. Therefore, this system will be one of promising candidates of dielectrics used for high-temperature capacitors.  相似文献   

20.
In this work, the effects of composition, temperature, and poling on the phase transition behavior under hydrostatic pressure of lead-free (1-x)[(0.98Bi0.5Na0.5Ti0.995Mn0.005O3-0.02BiAlO3)]-xNaNbO3 (BNT-BA-xNN) ceramics were investigated. It was found that hydrostatic pressure can induce a phase transformation from ferroelectric (FE) to relaxor (RE). Meanwhile, the FE-RE phase transition pressure (PFR) tends to decrease as the NN addition increases. Moreover, increasing temperature exhibits a similar effect that is, reducing PFR. The reduced PFR were considered to result from the reduced FE stability and increasing proportion of RE phase. However, PFR was obviously enhanced after poling, which can be attributed to the induced FE phase and the formation of macrodomains with application of an electric field. These results will aid in understanding the phase transition behavior of BNT-based relaxor ferroelectrics for applications under hydrostatic pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号