首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
The electrochemical behavior of nickel in HNO3 solutions of varying concentrations was examined using the cyclic voltammetry and potentiodynamic anodic polarization techniques. The anodic branch of the cyclic voltammogram is characterized by one anodic dissolution peak and a passivation region before oxygen evolution. The cathodic branch shows only one cathodic reduction peak corresponding to the reduction of HNO3. Analysis of the anodic polarization data shows features of both reversible and irreversible reactions pointing to the complexity of the system. CT ions enhance the active dissolution of nickel in HNO3 due to the adsorption on the bare metal surface and cause destruction of the passive film and initiation of pitting corrosion.  相似文献   

2.
The corrosion behavior of three Fe-Mn-Si-Cr-Ni-(Co) shape memory stainless steels (SMSS) in 0.5 M H2SO4 solution was studied through electrochemical and immersion tests. The test results were compared with that of a type 304 (SS 304) austenitic stainless steel. The three SMSSs exhibited a passive behavior in 0.5 M H2SO4 solution; however, their anodic behavior in the active dissolution region was markedly different. The passive current densities of the SMSSs were similar to that of SS 304, although the critical anodic current required for passivation was higher. The corrosion rate of the SMSSs was much higher than that of SS 304. It was observed that the amount of Cr and Mn plays an important role in the corrosion behavior of SMSSs. The best corrosion behavior in acid media was shown by the SMSS that contained the highest amount of Cr and the lowest amount of Mn.  相似文献   

3.
The electrochemical behaviour of nickel has been investigated in H2SO4 and HCl solutions of various concentrations by means of the potentiodynamic method. In very dilute solutions, the low anodic current is controlled by the presence of pre-existing film. At higher concentrations the film is removed and dissolution occurs. In H2SO4 solutions, pseudopassivity, primary passivity, transpassivity and secondary passivity are observed prior to oxygen evolution. In all these regions, the rate of dissolution increases with acid concentration. In HCl solutions, the anodic polarization curves exhibit a current peak followed by a passivation region; the latter may not involve complete passivity. In the active region, the uniform dissolution is controlled by diffusion processes. In the passive region, local attack in the form of pitting occurs. In both acid solutions, the cathodic and anodic polarization curves satisfy Tafel's relation.  相似文献   

4.
The corrosion resistance of three indigenous nitric acid grade (NAG) type 304L stainless steel (SS), designated as 304L1, 304L2 and 304L3 and two commercial NAG SS designated as Uranus-16 similar to 304L composition and Uranus-65 similar to type 310L SS were carried out in nitric acid media. Electrochemical measurements and surface film analysis were performed to evaluate the corrosion resistance and passive film property in 6 N and 11.5 N HNO3 media. The results in 6 N HNO3 show that the indigenous NAG 304L SS and Uranus-65 alloy exhibited similar and higher corrosion resistance with lower passive current density compared to Uranus-16 alloy. In higher concentration of 11.5 N HNO3, transpassive potential of all the NAG SS shows a similar range, except for Uranus-16 alloy. Optical micrographs of all the NAG SS revealed changes in microstructure after polarization in 6 N and 11.5 N HNO3 with corrosion attacks at the grain boundaries. Frequency response of the AC impedance of all the NAG SS showed a single semicircle arc. Higher polarization resistance (RP) and lower capacitance value (CPE-T) revealing higher film stability for indigenous NAG type 304L SS and Uranus-65 alloy. Uranus-16 alloy exhibited the lowest RP value in both the nitric acid concentration. Auger electron spectroscopy (AES) study in 6 N and 11.5 N HNO3 revealed that the passive films were mainly composed of Cr2O3 and Fe2O3 for all the alloys. The corrosion resistance of different NAG SS to HNO3 corrosion and its relation to compositional variations of the NAG alloys are discussed in this paper.  相似文献   

5.
The corrosion behaviour of Fe-15Mn-7Si-9Cr-5Ni (mass%) shape memory alloy at 25 °C in 0.5 M H2SO4 and 3.5% NaCl solutions has been studied using potentiodynamic polarization and electrochemical impedance techniques. Three different microstructures viz., single-phase γ, γ-δ and γ-Fe5Ni3Si2, were produced by heat-treating the alloy in different equilibrium phase fields. The corrosion behaviour in 0.5 M H2SO4 solution is almost same for all three microstructures, barring a slight difference in the passivation range. Although, the passivation current in 0.5 M H2SO4, is in the same range as that of SS 304, the critical current required for onset of passivation is almost three orders higher and the passivation range is much shorter. In 3.5% NaCl solution the corrosion behaviour of all three microstructures of the Fe-15Mn-7Si-9Cr-5Ni shape memory alloy was that of general dissolution without passivity or localized attack (pitting). The best corrosion resistance in both H2SO4 and NaCl solutions is shown by the single-phase γ microstructure.  相似文献   

6.
The corrosion behaviors of hafnium in Et4NBr isopropanol and acetonitrile(ACN) solutions were investigated using electrochemical measurements, ICP-AES and SEM techniques. Results revealed that the open circuit potential gets more positive due to the increased passivity of the surface oxide film with increasing immersion time until it reaches a steady state value. The potentiodynamic anodic polarization curves did not exhibit an active dissolution region near corrosion potential due to the presence of an oxide film on the electrode surface, which was followed by pitting corrosion. SEM images confirmed the existence of pits on the electrode surface. Cyclic voltammetry and galvanostatic measurements allowed the pitting potential (?pit) and the repassivation potential (?p) to be determined. ?pit increased with increasing potential scanning rate but decreased with increasing temperature, Br? concentration and ACN concentration. The impedance spectra showed that the resistances of the solution and charge transfer decreased with the increase of ACN concentration.  相似文献   

7.
The characteristics of pitting corrosion of Type 304L stainless steel (SS) exposed to highly concentrated chloride solutions were studied through the evaluation of the corrosion potential, the pitting potential, the structure of the passive layer and the statistics of pitting depth and density. Both as-received and weld metal samples were studied. The weld metal sample was machined from the welding zone of a butt weld of Type 304L SS. The results showed an accelerated anodic dissolution and depressed film resistance at the welding zone, but no dramatic change on pitting corrosion was observed from the statistics of pitting during the test duration up to 720?h. The pitting corrosion resistance was significantly affected by the chloride concentration and slightly affected by the temperature under the investigated conditions.  相似文献   

8.
A.A. Hermas 《Corrosion Science》2008,50(9):2498-2505
Improvement of the passivation behavior of Type 304 austenitic stainless steel (SS) by coating with conductive polymers (CPs), like polyaniline (PANI) and poly(o-phenylenediamine) (PoPD), followed by exposure in an acid solution has been demonstrated. The passive films formed on SSs (after peeling off the polymer layer) are compared with those formed during anodic polarization under the same exposure condition. The passive films beneath the CPs are thicker and less hydrated than those formed on uncoated stainless steel. The polymer layer enhances the enrichment of chromium and nickel in the entire passive oxide, forming a more protective film than that formed during anodic polarization. The elemental distribution within the passive film is different in the two modes of passivation. The type of the polymer influences on the composition of the passive film. The best passivation is obtained by PoPD, with the passive film resulting in significant resistance of the SS to pitting corrosion in the 3% NaCl solution. The oxide film of this steel is characterized, in its inner and outer layers, by the highest ratio of Cr(OH)3/Cr2O3 and the lowest content of iron species.  相似文献   

9.
The corrosion behaviour of AISI type 304L stainless steel (SS) in different concentration of 0.01 M, 1 M and 5 M HNO3 in presence of oxidizing ions at different temperatures has been evaluated. The main objective of this study is to assess the corrosion resistance of type 304L SS in non-radioactive conditions encountered during storage of liquid nuclear waste. Electrochemical impedance spectroscopy (EIS) and laser Raman spectroscopy (LRS) has clearly brought out the deleterious effect of oxidizing species on the passive film leading to increased corrosion along with increase in HNO3 concentration and higher temperature.  相似文献   

10.
A.Q. Fu 《Corrosion Science》2010,52(2):612-619
In this work, the alternating current (AC)-induced corrosion of a coated pipeline steel was studied in a chloride-containing, concentrated carbonate/bicarbonate solution, which simulated the trapped high pH electrolyte under coating, by potentiodynamic polarization measurements, immersion tests and surface characterization technique. It was found that an application of AC resulted in a negative shift of corrosion potential of the steel, caused an oscillation of anodic current density, and degraded the steel passivity developed in the solution. With the increase of AC current density, the corrosion rate of the steel increased. At a low AC current density, a uniform corrosion occurred, while at a high AC current density, pitting corrosion occurred extensively on the steel electrode surface. At individual applied AC, there was a higher electrochemical dissolution activity of the coated steel electrode containing a 1 mm defect than that of the electrode containing a 10 mm defect.  相似文献   

11.
The potentiodynamic anodic polarization curve of α-brass (70% Cu-30% Zn) in 1 M LiBr solution showed an initial active region of the alloy dissolution followed by two well defined anodic current peaks then a narrow passivation region before the pitting potential (Epit) is reached. The initial active anodic region exhibited Tafel slope with 90 mV dec−1 attributed to the formation of CuBr2 complexes. The anodic current peaks were attributed to the formation of CuBr and Cu2+ ions, respectively. The change of pH values of LiBr solution did not affect the anodic polarization curves of α-brass. Increasing the solution temperature from 30 to 90 °C changed the corrosion type from pitting to general one. The addition of 10−2 M benzotriazole (BTAH) to 1 M LiBr solution is completely inhibited the pitting corrosion at 30 °C while it did not inhibit the pitting at 90 °C. The inhibition effect was attributed to the adsorption of BTAH molecules on the alloy surface, which obeys Langmuir isotherm. The presence or absence of pitting corrosion was confirmed by using SEM.  相似文献   

12.
The anodic behaviour of a tin electrode in maleic acid solutions was investigated by potentiodynamic and chronopotentiometric methods. Measurements were conducted under different experimental conditions. The results demonstrated that the polarization curves exhibit active/passive transition. In active regions, tin dissolves as Sn2+ which is subsequently oxidized to Sn4+ and the dissolution process is controlled partly by diffusion of the solution species. The passivity is due to the presence of thin film of SnO2 on the anode surface formed by dehydration of precipitated Sn(OH)4. The active dissolution of tin increases with increasing acid concentration, temperature and scan rate. The potential transients showed that the passivation time decreases with increasing applied current density. The effect of adding increasing concentrations of CrO42−, MoO42− and NO2 ions on the anodic behaviour of tin in maleic acid was studied. These ions inhibit the active dissolution of tin and promote the attainment of passivity. The extent of these changes depends upon the type and concentration of the inhibitor.  相似文献   

13.
Electrochemical corrosion behavior of electroless Ni–P coating in NaCl and H2SO4 solutions were studied by potentiodynamic polarization curves and electrochemical impedance spectra techniques, as well as the corrosion morphology was characterized. The results indicate that electroless Ni–P coating with about 25 µm is stable in 30 days immersion in NaCl solution. Although it was corroded with prolonged immersion days, the corrosive medium has not penetrated through the coating. During the H2SO4 concentration ranging from 5 to 10%, the corrosion current density of electroless Ni–P coating increased due to the intensified anodic dissolution process; in 15% H2SO4 solution, electroless Ni–P coating shows obvious anodic passivation effect.  相似文献   

14.
The effect of cysteine on the corrosion of 304L stainless steel in 1 mol l−1 H2SO4 was studied using open-circuit potential measurements, anodic polarization curves, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). All the electrochemical measurements obtained in the presence of low cysteine concentration (10−6-10−5 mol l−1) presented the same behaviour as those obtained in the absence of cysteine, a passivated steel surface. However, for higher cysteine concentrations (10−4-10−2 mol l−1), a different behaviour was observed: the corrosion potential stabilized at a more negative value; an active region was observed in the anodic polarization curves and the electrochemical impedance diagrams showed an inductive loop at lower frequencies and a much lower polarization resistance. These results show that the presence of cysteine at high concentration turns the surface of 304L stainless steel electrochemically active, probably dissolving the passivation layer and promoting the stainless steel anodic dissolution. SEM experiments performed after immersion experiments at corrosion potential were in good agreement with the electrochemical results.  相似文献   

15.
The electrochemical behaviour of pure nickel in H2SO4 solutions has been potentiodynamically investigated. The effects of the following factors on the anodic dissolution and passivation of the metal are discussed: potential scan rate, successive cyclic voltammetry and progressive additions of Cl?, Br? and I? ions. Increasing the potential scan rate increases the critical current density icc, denoting that the active dissolution of nickel in H2SO4 is a diffusion controlled process. Cyclic voltammetry shows that the reverse excursion does not restore the anode to its active state. On successive cycling, the height of icc decreases; this could be attributed to the decrease in the reduction efficiency of passivating oxide film during the cathodic half cycles. The presence of the halogen ions below a certain concentration specific to each anion inhibits the anodic dissolution both in the active and passive states. The inhibitive action of these additives decreases in the order I?, Br?, Cl?. Beyond the specific concentrations, the halogen ions accelerate the anodic dissolution and shift the active passive transition to more positive values. The aggressiveness of these anions decreases in the sequence Cl?, Br?, I?, Further increase in the halogen ion concentrations can lead to breakdown of the passive film and initiate pitting. The susceptibility of nickel to pitting attack enhances with increasing H2SO4 concentration.  相似文献   

16.
J.R Kish  M.B Ives 《Corrosion Science》2003,45(7):1571-1594
Electrochemical, AES and XPS techniques were employed to characterize the anodic behaviour of S43000 stainless steel in concentrated sulphuric acid (90.0-96.4 wt.%). Electrochemical experiments showed that passivity is not spontaneous and requires anodic polarization in the acids studied. Rotating cylindrical electrode experiments showed that the corrosion rate is controlled by the mass transfer rate of FeSO4 from a saturated surface salt. AES and XPS analyses provided evidence that passivity involves the formation of a chromium-rich oxide-hydroxide film. The passivation mechanism and passive state stability are considered to relate to the manner in which undissociated H2SO4 molecules participate in the corrosion process. The findings have meaningful implications regarding the development of more corrosion resistant stainless steels for acid service.  相似文献   

17.
A remarkable improvement in the pitting corrosion resistance of 304 stainless steel was attempted using a novel duplex passivation treatment method. First, chemical passivation in nitric acid followed electrochemical passivation via potential polarization of step cycling in sodium nitrate electrolyte. Compared with traditional chemical passivation, breakdown potential was increased from 0.31 VSCE to positive than 0.9 VSCE at 70°C in a solution bearing 0.6 M [Cl?] concentration. The critical pitting temperature was enhanced from 21.5°C to above 70°C in a solution with 6 M [Cl?] concentration. Impedance analysis and X‐ray photoelectron spectroscopy results show that a more compact passive film with a higher ratio of chromium oxide on iron oxide was achieved by electrochemical passivation compared with chemical passivation. Morphology observation suggested that the potential polarization of step cycling slightly increased the dissolution of inclusions after being subjected to chemical passivation. The probable reason for the improvement on pitting resistance is discussed in detail based on inclusion dissolution and the protectiveness in passive film.  相似文献   

18.
The pitting corrosion of intermetallic compound Ni3(Si,Ti) was investigated as functions of test temperature and chloride concentration in sodium chloride solutions by using a potential step method. In addition, the pitting corrosion of solution-annealed austenitic stainless steel type 304 and pure nickel was also studied under the same experimental condition for comparison. The pitting potential obtained for the intermetallic compound decreased with increasing chloride concentration and test temperature. A critical chloride concentration below which no pitting corrosion took place was found to exist and to decrease with increasing test temperature. The specific pitting potential at the critical chloride concentration also decreased with increasing test temperature. In addition, the pitting potential at various constant chloride concentrations above the critical chloride concentration decreased with increasing test temperature. The pitting potential of Ni3(Si,Ti) was higher than pure nickel, but lower than that of type 304.  相似文献   

19.
The electrochemical behaviour of zinc in NaOH solutions has been investigated by using potentiodynamic technique and complemented by X-ray analysis. The E/i curves exhibit active, passive and transpassive regions prior to oxygen evolution. The active region displays two anodic peaks. The passivity is due to the Formation of a compact Zn(OH)2 film on the anode surface. The transpassive region is assigned to the electroformation of ZnO2. The reverse sweep shows an activation anodic peak and one catholic peak prior to hydrogen evolution. The influence of increasing additives of NaCl, NaBr and Nal on the anodic behaviour of zinc in NaOH solutions has been studied. The halides stimulate the active dissolution of zinc and tend to break down the passive film, leading to pitting corrosion. The aggressiveness of the halide anions towards the stability of the passive film decreases in the order: I? > Br? > Cl?. The susceptibility of zinc anode to pitting corrosion enhances with increasing the halide ion concentration but decreases with increasing both the alkali concentration and the sweep rate.  相似文献   

20.
The corrosion and passivation behaviour of bulk polycrystalline martensite Ni50Mn30Ga20 and austenite Ni48Mn30Ga22 alloys was compared in electrolytes with different pH values. Linear anodic and cyclic potentiodynamic polarisation methods and anodic current transient measurements have been conducted for the alloys and their constituents to analyze free corrosion, anodic dissolution and passive layer formation processes. Electrochemically treated alloy surfaces were characterized with scanning electron microscopy (SEM) and angle-resolved x-ray photoelectron spectroscopy (XPS). The electrochemical response of both alloys is in principal similar and is dominated by the Ni oxidation. In acidic solutions (pH 0.5 and 5) a slightly higher reactivity is detectable for the martensitic alloy which is mainly attributed to enhanced dissolution processes at the multiple twin boundaries. In weakly acidic to strongly alkaline solutions (pH 5-11) both alloys exhibit a low corrosion rate and a stable anodic passivity. While air-formed films comprise NiOOH, Ga2O3 and MnO2, passive films formed in near neutral media (pH 5-8.4) are composed of Ni(OH)2, NiOOH and Ga2O3 in the outer region and of NiO, MnO2 and MnO in the metal-near region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号