共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure for the simulation of the static and dynamic cutting forces in face milling is described. For the static force model, the initial position errors of the inserts and the eccentricity of the spindle are taken into consideration as the major factors affecting the variation of the chip cross-section. The structural dynamics model for the multi-tooth oblique cutting operation is assumed as a multi-degrees of freedom spatial system. From the relative displacement of this system, based on the double modulation principle, the dynamic cutting forces were derived and simulated. The simulated forces were subsequently compared to measured forces in the time and frequency domains. 相似文献
2.
New procedures for calibration of instantaneous cutting force coefficients and cutter runout parameters in peripheral milling 总被引:1,自引:0,他引:1
Min Wan Wei-Hong Zhang Jian-Wei Dang Yun Yang 《International Journal of Machine Tools and Manufacture》2009,49(14):1144-1151
In this paper, new procedures are proposed to calibrate the instantaneous cutting force coefficients and the cutter runout parameters for peripheral milling. By combining with optimization algorithm, i.e., the Nelder–Mead simplex method, detailed calibration schemes are derived for a mechanistic cutting force model in which the cutting force coefficients are described as the exponential functions of the instantaneous uncut chip thickness. Three different cutter runout models are considered in the calculation of instantaneous uncut chip thickness. Only one or two tests are required to perform the calibration. Experimental verifications are also conducted to validate the proposed procedures, and the results show that they are efficient and reliable. To see the effect of different runout models on milling process, comparisons among the predicted results under a wide range of cutting parameters are made to study the consistency and limitations of different models. It is found that the radial cutter runout model is a recommendable one for cutting force modelling. 相似文献
3.
A new procedure to determine instantaneous cutting force coefficients for machining force prediction
Yung C. Shin Andrew J. Waters 《International Journal of Machine Tools and Manufacture》1997,37(9):1337-1351
This paper presents a new procedure to determine instantaneous cutting force coefficients which are required for process simulation by mechanistic modeling. This new procedure drastically reduces the number of experiments for calibration and improves the accuracy of dynamic cutting forces and force signatures by considering the size effects. Comparisons are shown to illustrate the effectiveness of the proposed method in determining the chip flow angle and those predicted by various existing analytical models. The importance of using instantaneous cutting force coefficients instead of conventional average coefficients is demonstrated through simulation based on the mechanistic models. 相似文献
4.
Titanium is one of the most widely used metals in the aircraft and turbine manufacturing industries. Accurate prediction of cutting forces is important in controlling the dimensional accuracy of thin walled aerospace components. In this paper, a general three-dimensional mechanistic model for peripheral milling processes is presented. The effects of chip thickness, rake angle and cutting geometry on chip flow, rake face friction and pressure, and cutting forces are analyzed. A set of closed form expressions with experimentally estimated cutting force factors are presented for the prediction of cutting forces. The model is verified experimentally in the peripheral milling of a titanium alloy. For a given set of cutting conditions and tool geometry, the model predicts the cutting forces accurately for the chip thickness and rake angle ranges tested. 相似文献
5.
Experimental studies of cutting force variation in face milling 总被引:4,自引:0,他引:4
C. Andersson 《International Journal of Machine Tools and Manufacture》2011,51(1):67-76
The purpose of this paper is to present a developed cutting force model for multi-toothed cutting processes, including a complete set of parameters influencing the cutting force variation that has been shown to occur in face milling, and to analyse to what extent these parameters influence the total cutting force variation for a selected tool geometry. The scope is to model and analyse the cutting forces for each individual tooth on the tool, to be able to draw conclusions about how the cutting action for an individual tooth is affected by its neighbours.A previously developed cutting force model for multi-toothed cutting processes is supplemented with three new parameters; eccentricity of the spindle, continuous cutting edge deterioration and load inflicted tool deflection influencing the cutting force variation. A previously developed milling force sensor is used to experimentally analyse the cutting force variation, and to give input to the cutting force simulation performed with the developed cutting force model.The experimental results from the case studied in this paper show that there are mainly three factors influencing the cutting force variation for a tool with new inserts. Radial and axial cutting edge position causes approximately 50% of the force variation for the case studied in this paper. Approximately 40% arises from eccentricity and the remaining 10% is the result of spindle deflection during machining. The experimental results presented in this paper show a new type of cutting force diagrams where the force variation for each individual tooth when two cutting edges are engaged in the workpiece at the same time. The wear studies performed shows a redistribution of the individual main cutting forces dependent on the wear propagation for each tooth. 相似文献
6.
Won Tae Kwon Deokki Choi 《International Journal of Machine Tools and Manufacture》2002,42(15):1649-1655
Radial immersion ratio is an important factor to determine the threshold for tool conditioning monitoring and automatic force regulation in face milling. In this paper, a method of on-line estimation of the radial immersion angle using cutting force is presented. When a tooth finishes sweeping, a sudden drop of cutting force occurs. This force drop is equal to the cutting force that acts on a single tooth at the swept angle of cut and can be obtained from the cutting force signal in feed and cross-feed directions. The ratio of cutting forces in feed and cross-feed directions acting on the single tooth at the immersion angle is a function of the immersion angle and the ratio of radial-to-tangential cutting force. In this study, it is found that the ratio of radial-to-tangential cutting force is not affected by cutting conditions and axial rake angle. Therefore, the ratio of radial-to-tangential cutting force determined by just one preliminary experiment can be used regardless of the cutting conditions for a given tool and workpiece material. Using the measured cutting force during machining and a predetermined ratio, the radial immersion ratio is estimated in the process. Various experiments show that the radial immersion ratio and instantaneous ratio of the radial to tangential direction cutting force can be estimated very well by the proposed method. 相似文献
7.
The instantaneous uncut chip thickness and specific cutting forces have a significant effect on predictions of cutting force. This paper presents a systematic method for determining the coefficients in a three-dimensional mechanistic cutting force model—the cutting force coefficients (two specific cutting forces, chip flow angle) and runout parameters. Some existing models have taken the approach that the cutting force coefficients vary as a function of cutting conditions or cutter rotation angle. This paper, however, considers that the coefficients are affected only by the uncut chip thickness. The instantaneous uncut chip thickness is estimated by following the movement of the position of the center of a cutter. To consider the size effect, the present method derives the relationship between the re-scaled uncut chip thickness and the normal specific cutting force, Kn with respect to the cutter rotation angle, while the other two coefficients—frictional specific cutting force, Kf and chip flow angle, θc—remain constant. Subsequently, all the coefficients can be obtained, irrespective of cutting conditions. The proposed method was verified experimentally for a wide range of cutting conditions, and gave significantly better predictions of cutting forces. 相似文献
8.
Cutting force model for multi-toothed cutting processes and force measuring equipment for face milling 总被引:1,自引:0,他引:1
C. Adolfsson J-E. Sthl 《International Journal of Machine Tools and Manufacture》1995,35(12):1715-1728
This article presents a mechanical cutting force model for multi-tooth cutting processes, where initial position errors in radial and axial direction, eccentricity and edge wear are taken into account. The cutting forces are presented for each individual cutting edge, and in a system of coordinates where one axis is parallel to the cutting speed vector at any instant. The process parameter cutting resistance, Cr is derived from the measured main cutting force FM. Cr should be regarded as a parameter since it is always increasing with decreasing values of theoretical chip thickness h1. A new way of measuring cutting forces in multi-tooth cutting processes is also presented. Eight cutting force components are measured on the tool close to each of the four cutting edges. The aroused signals are filtered, amplified, A/D-converted and put together in a serial stream for transmission through a hollow spindle via a fibre optic cable. The signals are sent from the rotating spindle to the frame of the machine over an air gap with Light Emitting Diodes. They are then demultiplexed, D/A-converted, and stored in a PC-based eight channel oscilloscope. With this measurement equipment it is possible to directly measure the cutting forces acting on each individual cutting edge. 相似文献
9.
Hong-Tsu Young P. Mathew P.L.B. Oxley 《International Journal of Machine Tools and Manufacture》1994,34(6)
It is shown how orthogonal machining theory can be applied to predict the cutting forces in face milling from a knowledge of the work material properties and cutting conditions. Predicted and experimental results are compared. 相似文献
10.
This paper systematically studies the cutting force modelling methods in peripheral milling process in the presence of cutter runout. Emphasis is put on how to efficiently calibrate the cutting force coefficients and cutter runout. Mathematical derivations and implementation procedures are carried out based on the measured cutting force or its harmonics from Fourier transformation. Five methods are presented in detail. In the first three methods the cutting force coefficients are assumed to be constants whereas in the last two they are taken as functions of instantaneous uncut chip thickness. The first method and the fifth one are taken from literatures for comparison. The second, the third and the fourth methods are original contributions, which are carried out with optimization ideas. The second method proceeds using the first and Nkth harmonic forces as the source signal while the third and the fourth are derived based on the measured cutting forces and its first harmonics. The engagement of the cutter with the workpiece is considered in these three new calibration procedures without the requirement of a prior knowledge of the actual cutter runout. Comparisons among the calibrated results from different methods are made to study the limitations and consistency of the presented methods. Experiments are also conducted to show the prediction ability of all methods. 相似文献
11.
Zhen-Qiang Yao Xin-Guang Liang Lei Luo Jun Hu 《Journal of Materials Processing Technology》2013,213(9):1575-1587
The accuracy of cutting force coefficients plays an important role in predicting reliable cutting force, stability lobes as well as surface location error in ball-end milling. In order to avoid chatter risk of the traditional calibration test with an entire-ball-immersed cutting depth, a cylindrical surface milling method is proposed to calibrate the cutting force coefficients with the characteristics of low cutting depth and varying lead angle. A dual-cubic-polynomial function is also presented to describe the non-uniform cutting force coefficients of the ball part cutting edge and the nonlinear chip size effect on cutting force. The variation of the maximum chip thickness versus the lead angle is established with the consideration of cutter runout. According to the dependence of chip thickness on lead angle, a runout identification method is introduced by seeking the critical lead angle at which one of the cutter flutes is just thoroughly out of cut. Then, a lumped equivalent method is adopted for the low cutting depth condition so that the dual-cubic-polynomial model can be calibrated for the chip size effect and the cutting force coefficients respectively. The accuracy of the proposed calibration method has been validated experimentally with a series of milling tests. The stability examinations indicate that the proposed method has an evident chatter-free advantage, compared with that of varying cutting depth method. 相似文献
12.
Efficient calibration of instantaneous cutting force coefficients and runout parameters for general end mills 总被引:5,自引:1,他引:5
M. Wan W.H. Zhang G.H. Qin G. Tan 《International Journal of Machine Tools and Manufacture》2007,47(11):1767-1776
This paper aims at developing a unified approach to identify the cutting force coefficients together with the cutter runout parameters for general end mills such as cylindrical, ball, bull nose ones, etc. The cutting forces that are modeled using the instantaneous cutting force coefficients are analyzed and separated into two terms: a nominal component independent of the runout and a perturbation component induced by the runout. The nominal component enables the calibration of the instantaneous cutting force coefficients whereas the runout parameters are determined from the perturbation component. The validity of the present method is demonstrated with simulation and experimented data. 相似文献
13.
The prediction of cutting force in ball-end milling 总被引:2,自引:0,他引:2
Due to the development of CNC machining centers and automatic programming software, the ball-end milling have become the most widely used machining process for sculptured surfaces. In this study, the ball-end milling process has been analysed, and its cutting force model has been developed to predict the instantaneous cutting force on given machining conditions. The development of the model is based on the analysis of cutting geometry of the ball-end mill with plane rake faces. A cutting edge of the ball-end mill was considered as a series of infinitesimal elements, and the geometry of a cutting edge element was analysed to calculate the necessary parameters for its oblique cutting process assuming that each cutting edge was straight. The oblique cutting process in the small cutting edge element has been analysed as an orthogonal cutting process in the plane containing the cutting velocity and chip flow vectors. And with the orthogonal cutting data obtained from end turning tests on thin-walled tubes over wide range of cutting and tooling conditions, the cutting forces of ball-end milling could be predicted using the model. The predicted cutting forces have shown a fairly good agreement with test results in various machining modes. 相似文献
14.
Takashi Matsumura Eiji Usui 《International Journal of Machine Tools and Manufacture》2010,50(5):458-466
A force model is presented to predict the cutting forces and the chip flow directions in cuttings with complex-shaped end mills such as ball end mills and roughing end mills. Three-dimensional chip flow in milling is interpreted as a piling up of the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities. Because the cutting thickness changes with the rotation angle of the edge in the milling process, the surface profile machined by the previous edge inclines with respect to the cutting direction. The chip flow model is made using the orthogonal cutting data with taking into account the inclination of the pre-machined surface. The chip flow direction is determined so as to minimize the cutting energy, which is the sum of the shear energy on the shear plane and the friction energy on the rake face. Then, the cutting force is predicted for the chip flow model at the minimum cutting energy. The predicted chip flow direction changes not only with the local edge inclination but also with the cutting energy consumed in the shear plane cutting model. The cutting processes with a ball end mill and a roughing end mill are simulated to verify the predicted cutting forces in comparison with the measured cutting forces. 相似文献
15.
Extracting cutting force coefficients from drilling experiments 总被引:1,自引:1,他引:1
R.F. Hamade C.Y. Seif F. Ismail 《International Journal of Machine Tools and Manufacture》2006,46(3-4):387-396
Determining cutting force equations and the associated specific cutting pressures require a relatively large number of orthogonal cutting tests. These tests need to cover wide ranges of cutting speeds, feeds, and rake angles. Given the inherent variation of the rake angle and the tangential velocity over the drill's cutting lip, this work introduces a methodology for extracting these cutting force coefficients by performing a few drilling experiments on pre-drilled pilot holes.First, the contributions of the ploughing forces acting on the lip and margin are determined. Subtracting these edge forces from the measured total values, torque and thrust cutting forces and the corresponding cutting pressure distributions along the lip are derived. These distributions are then used to produce equations that estimate cutting force coefficients over a wide range of cutting parameters. The coefficients determined in this work from drilling experiments in Aluminium 6061-T6 compare favorably with others generated from orthogonal cutting experiments reported in the literature. 相似文献
16.
M.T. Zaman A. Senthil Kumar M. Rahman S. Sreeram 《International Journal of Machine Tools and Manufacture》2006,46(3-4):353-366
In the present day manufacturing arena one of the most important fields of interest lies in the manufacturing of miniaturized components. End milling with fine-grained carbide micro end mills could be an efficient and economical means for medium and small lot production of micro components. Analysis of the cutting force in micro end milling plays a vital role in characterizing the cutting process, in estimating the tool life and in optimizing the process. A new approach to analytical three-dimensional cutting force modeling has been introduced in this paper. The model determines the theoretical chip area at any specific angular position of the tool cutting edge by considering the geometry of the path of the cutting edge and relates this with tangential cutting force. A greater proportion of the helix face of the cutter participating in the cutting process differs the cutting force profile in micro end milling operations a bit from that in conventional end milling operations. This is because of the reason that the depth-of-cut to tool diameter ratio is much higher in micro end milling than the conventional one. The analytical cutting force expressions developed in this model have been simulated for a set of cutting conditions and are found to be well in harmony with experimental results. 相似文献
17.
Balázs Tukora Tibor Szalay 《International Journal of Machine Tools and Manufacture》2011,51(12):871-879
The determination of the cutting force coefficients is a critical point in the case of using the mechanistic cutting force model for predicting the forces during milling processes. The main reason is that the computations require a series of experiments with special geometrical conditions, and the validity of the results is limited. In this paper a cutting force predicting method, based on the mechanistic cutting force model will be introduced, together with an algorithm for determining the cutting force coefficients in the course of a single experiment without restrictions in regard to the cutting geometry. Besides the fact that the proposed method lifts the geometrical restrictions of the previously published solutions, it makes it possible to calculate the coefficients just when they are needed for force prediction right at the machining process, to avoid the problem of the limited validity of the coefficients. In this case the real-time measuring of the cutting forces is needed, while the forthcoming forces can be predicted with an appropriate look-forward algorithm, which is also presented. 相似文献
18.
An in-depth analysis of the synchronization between the measured and predicted cutting forces for developing instantaneous milling force model 总被引:1,自引:0,他引:1
M. Wan W.H. Zhang G. Tan G.H. Qin 《International Journal of Machine Tools and Manufacture》2007,47(12-13):2018-2030
This paper proposes an analytical approach to synchronize the measured and predicted cutting forces for calibrating instantaneous cutting force coefficients that vary with the instantaneous uncut chip thickness in general end milling. Essential issues such as the synchronization criterion, phase determination of measured cutting forces, specification of calibration experiments and related cutting parameters are highlighted both theoretically and numerically to ensure the calibration accuracy. A closed-form criterion is established to select cutting parameters ensuring the single tooth engagement. Numerical cutting simulations and experimental test results are compared to validate the proposed approach. 相似文献
19.
Takashi Matsumura Eiji Usui 《International Journal of Machine Tools and Manufacture》2010,50(5):467-473
The cutting force and the chip flow direction in peripheral milling are predicted by a predictive force model based on the minimum cutting energy. The chip flow model in milling is made by piling up the orthogonal cuttings in the planes containing the cutting velocities and the chip flow velocities. The cutting edges are divided into discrete segments and the shear plane cutting models are made on the segments in the chip flow model. In the peripheral milling, the shear plane in the cutting model cannot be completely made when the cutting point is near the workpiece surface. When the shear plane is restricted by the workpiece surface, the cutting energy is estimated taking into account the restricted length of the shear plane. The chip flow angle is determined so as to minimize the cutting energy. Then, the cutting force is predicted in the determined chip flow model corresponding to the workpiece shape. The cutting processes in the traverse and the contour millings are simulated as practical operations and the predicted cutting forces verified in comparison with the measured ones. Because the presented model determines the chip flow angle based on the cutting energy, the change in the chip flow angle can be predicted with the cutting model. 相似文献
20.
The majority of cutting force models applied for the ball end milling process includes only the influence of cutting parameters (e.g. feedrate, depth of cut, cutting speed) and estimates forces on the basis of coefficients calibrated during slot milling. Furthermore, the radial run out phenomenon is predominantly not considered in these models. However this approach can induce excessive force estimation errors, especially during finishing ball end milling of sculptured surfaces. In addition, most of cutting force models is formulated for the ball end milling process with axial depths of cut exceeding 0.5 mm and thus, they are not oriented directly to the finishing processes. Therefore, this paper proposes an accurate cutting force model applied for the finishing ball end milling, which includes also the influence of surface inclination and cutter's run out. As part of this work the new method of specific force coefficients calibration has been also developed. This approach is based on the calibration during ball end milling with various surface inclinations and the application of instantaneous force signals as an input data. Furthermore, the analysis of specific force coefficients in function of feed per tooth, cutting speed and surface inclination angle was also presented. In order to determine geometrical elements of cut precisely, the radial run out was considered in equations applied for the calculation of sectional area of cut and active length of cutting edge. Research revealed that cutter's run out and surface inclination angle have significant influence on the cutting forces, both in the quantitative and qualitative aspect. The formulated model enables cutting force estimation in the wide range of cutting parameters, assuring relative error's values below 16%. Furthermore, the consideration of cutter's radial run out phenomenon in the developed model enables the reduction of model's relative error by the 7% in relation to the model excluding radial run out. 相似文献