首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schottky CdTe detectors are good candidates for large pixel array imagers. For use of such arrays in Positron Emission Tomography (PET) the coincidence timing of the detectors is very important, since it reduces the background from random coincidences. The coincidence timing of a small 2×2×1 mm3 detector has been measured as 11.6 ns, and thus is not much worse than the timing of BGO scintillators, commonly used in PET.  相似文献   

2.
A 252Cf fission fragment source was used to produce heavy-ion radiation damage in a double-sided silicon strip detector. It was found that a good quality fission fragment spectrum (as determined by the peak to valley ration NL/NV) could not be achieved for radiation incident on the p+ face of the detector. However, for radiation incident on the n+ face, the ratio NL/NV remained adequate up to an accumulated dose of 4×106 fragments mm−2. For the measurement of alphas, typical resolution deteriorated from an initial 30 keV FWHM to 50 keV FWHM at a dose of 8×106 fragments mm−2 for incident on the n+ face, and 6×106 for radiation incident on the p+ face. The interstrip resistance in one region of the n+ face broke down completely after a relatively small radiation doses incident on that face. Further investigation of this is still required.  相似文献   

3.
We describe a novel method to extract the axial coordinate from a matrix of long axially oriented crystals, which is based on wavelength shifting (WLS) plastic strips. The method allows building compact 3-D axial gamma detector modules for PET scanners with excellent 3-D spatial, timing and energy resolution while keeping the number of readout channels reasonably low. A voxel resolution of about 10 mm3 is expected. We assess the performance of the method in two independent ways, using classical PMTs and G-APDs to read out the LYSO (LSO) scintillation crystals and the WLS strips. We observe yields in excess of 35 photoelectrons from the strips for a 511 keV gamma and reconstruct the axial coordinate with a precision of about 2.5 mm (FWHM).  相似文献   

4.
We have developed a new type of field-expansion spectrometer to measure the neutron beta decay correlations (a, b, B, and A). A precision measurement of these correlations places stringent requirements on charged particle detectors. The design employs large area segmented silicon detectors to detect both protons and electrons in coincidence. Other requirements include good energy resolution (< 5 keV), a thin dead layer to allow observation of 30-keV protons, fast timing resolution (~1 ns) to reconstruct electron-backscattering events, and nearly unity efficiency. We report results of testing commercially available surface-barrier silicon detectors for energy resolution and timing performance, and measurement of the dead-layer thickness of ion-implanted silicon detectors with a 3.2 MeV alpha source.  相似文献   

5.
In order to improve the resolution in alpha liquid scintillation and to promote this method for the measurement of actinides in environment, a silicon Large Area Avalanche Photodiode (LAAPD) has been tested as liquid scintillation detector. The set-up consists of a LAAPD (16 mm diameter) coupled to a thin vial containing alpha-emitters and a liquid scintillation cocktail. After optimization of several parameters like bias voltage, temperatures, counting geometry and composition of scintillating cocktail, energy resolutions are found to be better than those obtained with photomultiplier tubes: 5% (200 keV FWHM) for 232Th and 3.9% (260 keV FWHM) for 216Po. The improvement in energy resolution is not due to higher quantum efficiency of the silicon device but to better uniformity of the spatial photoresponse. A few energy spectra of thorium, plutonium and americium are given as example.  相似文献   

6.
The objective of this work is to develop a gamma ray spectrometer (GRS) suitable for use on planetary rover missions. The main characteristics of this detector are low weight, small volume low power and resistance to cosmic ray radiation over a long period of time. We describe a 3 cm diameter by 3 cm thick CdWO4 cylindrical scintillator coupled to a PMT as a GRS for the energy region 0.662–7.64 MeV. Its spectral performance and efficiency are compared to that of a CsI(Tl) scintillator 2.5 cm diameter by 6 cm thick coupled to a 28 mm×28 mm PIN photodiode. The comparison is made experimentally using 137Cs, 60Co, 6.13 MeV gamma rays from a 13C(,γn)O16* source, 7.64 MeV thermal neutron capture gamma rays emitted from iron bars using a 252Cf neutron source, and natural radioactivity 1.46 MeV 40K and 2.61 MeV 232Th gamma rays. We use a Monte Carlo method to calculate the total peak efficiency of these detectors and the full energy, first and second escape peak efficiencies. The experimental and calculated results agree well. We investigated the usefulness of these detectors for a GRS on a Mars lander mission. Although both detectors meet desired specifications, it was found that CdWO4 has advantages over CsI(Tl) being a more compact detector of higher efficiency. Using a shaping amplifier of 24 ms, CdWO4 spectrometer exhibited a 6.8% FWHM at 662 keV. At 6.13 MeV, CdWO4 detector possesses an intrinsic total and full energy peak efficiencies of 16.7% and 6.3%, respectively. These efficiencies are nearly a factor of 1.6 and 4 greater than the corresponding efficiencies of the CsI(Tl) detector.

A proposed gamma ray spectroscopy system to be placed on a rover, consists of a central detector surrounded by a Compton suppressor shield. The central detector is a cylindrical CdWO4 detector and the Compton suppressor shield is made of segmented CdWO4, coupled to PIN photodiodes. The shield also prevents thermal neutron activation of the central detector.  相似文献   


7.
2.2 GBq of 18F (half-life 110 min) was effectively deposited on a graphite electrode of diameter 3 or 5 mm. The fraction of the electro-deposited 18F was as high as 97% of the total 18F produced in the solution. The fraction of the positrons emitted out of the electrode was 44% of the total β+. Thus, as much as 36% of the β+ from the produced 18F is available for the source of slow positron beams.  相似文献   

8.
A three-detector BaF2 positron-lifetime spectrometer is described. The spectrometer is suited for investigations of the neutron-irradiated reactor pressure vessel steels with a high content of 60Co. Both timing and energy information about annihilation γ-rays is used for selection of coincidence events. In the triple-coincidence mode, the time resolution of around 220 ps FWHM and the coincidence count rate of 15 s−1 for a 4 MBq 22Na positron source are simultaneously achieved. Test measurements performed have shown that in this mode the 60Co prompt-peak contribution in the positron-lifetime spectrum is suppressed to be below 1% when 60Co activity of a pair of specimens studied does not exceed the level of 4 MBq.  相似文献   

9.
For the first time, calorimetric low-temperature detectors were applied in accelerator mass spectrometry, a well-known method for determination of very small isotope ratios with high sensitivity. The aim of the experiment was to determine with high accuracy the isotope ratio of 236U/238U for several samples of natural uranium, 236U being known as a sensitive monitor for neutron flux. Measurements were performed at the VERA tandem accelerator at Vienna, Austria. The detectors consist of sapphire absorbers and superconducting transition edge thermometers operated at T≈ 1.5 K. The relative energy resolution obtained for 17.39 MeV 238U is ΔE/E=4–9×10−3, depending on the experimental conditions. This performance enabled to substantially reduce background from neighbouring isotopes and to increase the detection efficiency. Due to the high sensitivity achieved, a value of 236U/238U=6.5×10−12 could be obtained, representing the smallest 236U/238U ratio measured until now.  相似文献   

10.
Both n-strip on n-bulk and p-strip on n-bulk silicon microstrip detectors have been irradiated at the CERN PS to a fluence of 3×1014 pcm−2 and their post-irradiation performance compared using fast binary readout electronics. Results are presented for test beam measurements of the efficiency and resolution as a function of bias voltage made at the CERN SPS, and for noise measurements giving detector strip quality. The detectors come from four different manufacturers and were made as prototypes for the SemiConductor Tracker of the ATLAS experiment at the CERN LHC.  相似文献   

11.
A new grab sampling method has been developed for the measurement of 18F attached to aerosol particles. It is based on direct β-counting of filtered aerosol sample over successive time intervals by an end-window Geiger–Müller counter. The effect of the progeny of radon and thoron on the β-counting rate is separated by analysing the decay curve. The defined solid angle absolute counting was used to evaluate the efficiencies for 18F and for the progeny of radon and thoron one by one. Absolute activity concentration of 18F can be determined with less than 10% systematic error. Glass-fibre filter and high sampling flow rate are applied, leading to a detection limit for 18F of less than 1 Bq m−3. The method was tested under different circumstances in the PET centre of University of Debrecen, Hungary.  相似文献   

12.
A new method to modify coordinates of detectors in any positron emission tomography (PET) system using a radioactive point source is developed. This method is based on selecting a centered detector in each detector block of PET and measuring coincidence counts between the two centered detectors in opposite detector blocks to find the coordinates of their LOR (Line of Response). Due to slight misalignment of detector positions, measured LORs may not intersect at a single point. Based on the proposed method, the coordinates of detectors can be measured with very high accuracy and the coordinate of the center of the gantry (which is normally the same as the center of field of view) can be defined correctly. The results of the application of our method to a small animal PET system (FinePET), which was recently developed at Tohoku University, Japan, are shown here. The method is expected to contribute to the design and development of PET systems which can realize a very high spatial resolution of less than 1 mm FWHM.  相似文献   

13.
Design and development of an intense 14 MeV neutron source for cancer therapy is in progress at the Institute of Nuclear Research of Lanzhou University. The neutrons from the T(d,n)4He reaction are produced by bombarding a rotating titanium tritide target with a 40 mA deuteron beam at 600 keV. The designed neutron yield is 8×1012 n/s and the maximum dose rate at a 100 cm source-to-skin distance is 25 cGy/min. The HV terminal, accelerating column and HV power supply are enclosed inside a stainless steel pressure vessel containing 6 atm SF6 gas to provide the electrical insulation.  相似文献   

14.
An apparatus for detecting light and heavy fragments, in coincidence with γ-rays is described. Its use is foreseen for studying heavy ion complete and incomplete fusion reactions at low and intermediate energy.

The ΔE-E and TOF techniques are used for charged particle identification at small angles using a combination of Si strip detectors and CsI(Tl) crystals. The γ-ray detection is performed by using a coverage of 9 clusters, each consisting of 7 BaF2 crystals, similar to the TAPS configuration, resulting in a large solid angle and a high granularity. We report on recent results about the charged particle discrimination and the time and energy resolution for the whole detector. Initial tests were performed using 12C, 19F and 28Si beams accelerated by the 15 MV tandem of the Laboratorio Nazionale del Sud in Catania.  相似文献   


15.
At the end of 2001 the Milano Double Beta Decay (MI-DBD) experiment on double beta decay of 130Te has been completed. The project Cryogenic Underground Observatory for Rare Events (CUORE), proposed as a natural extension of MI-DBD, will be a tightly packed array of 1000 TeO2 bolometers, each being a cube 5 cm on a side with a mass of 790 g. The array will consists of 25 vertical towers, arranged in a square of 5 towers by 5 towers, each containing 10 layers of 4 crystals. A single CUORE tower has been constructed as a smaller scale experiment called CUORICINO. The technical feasibility of CUORE is now being tested in CUORICINO, running since few weeks. The CUORICINO experiment consists of 44 TeO2 detectors 5×5×5 cm3 and 18 TeO2 detectors 3×3×6 cm3 for a total mass of approximately 41 kg. An analysis of the detector performances is presented together with the new limit obtained on neutrinoless double beta decay of 130Te.  相似文献   

16.
A computer simulation study has been conducted to investigate the feasibility of a positron emission tomography (PET) detector design by using micro-channel plate (MCP) photomultiplier tubes (PMT) with transmission-line (TL) read-out and waveform sampling. The detector unit consisted of a 24×24 array of pixelated LSO crystals, each of which was 4×4×25 mm(3) in size, and two 102×102 mm(2) MCP-PMTs coupled to both sides of the scintillator array. The crystal (and TL) pitch was 4.25 mm and reflective medium was inserted between the crystals. The transport of the optical photons inside the scintillator were simulated by using the Geant4 package. The output pulses of the MCP-PMT/TL unit were formed by applying the measured single photo-electron response of the MCP-PMT/TL unit to each individual photon that interacts with the photo-cathode of the MCP-PMT. The waveforms of the pulses at both ends of the TL strips were measured and analyzed to produce energy and timing information for the detected event. An experimental setup was developed by employing a Photonis Planacon MCP-PMT (XP85022) and a prototype TL board for measuring the single photo-electron response of the MCP-PMT/TL. The simulation was validated by comparing the predicted output pulses to measurements obtained with a single MCP-PMT/TL coupled to an LSO crystal exposed to 511 keV gamma rays. The validated simulation was then used to investigate the performance of the proposed new detector design. Our simulation result indicates an energy resolution of ~11% at 511 keV. When using a 400-600 keV energy window, we obtain a coincidence timing resolution of ~323 ps FWHM and a coincidence detection efficiency of ~40% for normally-incident 511keV photons. For the positioning accuracy, it is determined by the pitch of the TLs (and crystals) in the direction normal to the TLs and measured to be ~2.5 mm in the direction parallel to the TLs. The energy and timing obtained at the front- and back-end of the scintillator array also show differences that are correlated with the depth of interaction of the event.  相似文献   

17.
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 × 108 s−1 to 1.4 × 1011 s−1. The results show that two critical strain rates, i.e., 5 × 109 s−1 and 8 × 1010 s−1, are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 × 109 s−1, Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {1 1 1} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8 × 1010 s−1, Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 × 109 s−1 and 8 × 1010 s−1, only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {1 1 1} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation.  相似文献   

18.
The “edge-on” illuminated microchannel plate (MCP) position-sensitive detector (PSD) is used for gamma-ray imaging for the first time. The superior position resolution of the MCP is combined with high detection efficiency due to the “edge-on” illumination mode. The results of imaging a 15 μCi 137Cs source (662 keV quantum energy) are presented.  相似文献   

19.
Alpha particle spectrometry is a powerful analytical tool for nuclear forensics and environmental monitoring. Microcalorimeter detectors have been shown to yield nearly an order of magnitude better energy resolution (1.06?keV FWHM at 5.3?MeV) than current state-of-the-art silicon detectors (8–10?keV FWHM at 5.3?MeV). This superior resolution allows isotopic analysis with a single non-consumptive measurement of samples that contain multiple radioisotopes with overlapping alpha energies. Measurement of such a sample with a silicon detector would require expensive and time-consuming radiochemical separations. We are developing two alpha spectrometer systems with superconducting transition-edge sensor microcalorimeters. The first system has eight independent detector channels that measure eight different alpha sources, and is optimized for detector development experiments. The second system incorporates a prototype cryogenic load lock that allows for rapid exchange of alpha samples. This paper will present results from these two systems.  相似文献   

20.
The purpose of the following investigation was to display the utility of 19F solid-state nuclear magnetic resonance (NMR) in both distinguishing between solid forms of a selective muscarinic M3 receptor antagonist and characterizing the active pharmaceutical ingredient in low-dose tablets. Ambient- and elevated-temperature solid-state 19F fast (15 kHz) magic-angle spinning (MAS) NMR experiments were employed to obtain desired spectral resolution in this system. Ambient sample temperature combined with rotor frequencies of 15 kHz provided adequate 19F peak resolution to successfully distinguish crystalline and amorphous forms in this system. Additionally, elevated-temperature 19F MAS NMR further characterized solid forms through 19F resonance narrowing brought about by the phenomenon of solvent escape. Similar solvent dynamics at elevated temperatures were utilized in combination with ambient-temperature 19F MAS NMR analysis to provide excipient-free spectra to unambiguously identify the active pharmaceutical ingredient (API) conversion from crystalline Form I to the amorphous form in low-dose tablets. It is shown that 19F solid-state NMR is exceptionally powerful in distinguishing amorphous and crystalline forms in both bulk and formulation samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号