首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites》1990,21(6):495-502
This paper is concerned with the evaluation of three in-plane shear test methods for advanced carbon fibre composites for aerospace applications. To accomplish this goal, the losipescu, ± 45° tensile and 10° off-axis tensile shear test methods were evaluated for three advanced epoxy matrix materials (Narmco 5245C, Hexcel F584 and American Cyanamid Cycom 1806) reinforced with Hercules IM6 carbon fibres. The values of in-plane shear moduli obtained from the three test methods and three materials were then used with other previously determined elastic constants to predict the tensile moduli of (+45°/0°/−45°/90°)6s laminates. Comparison of the predicted and experimental laminate tensile moduli showed that any one of the three shear test methods was appropriate for determining the in-plane shear modulus to predict tensile moduli of symmetric laminates which consist of equal numbers of 0°, +45°, −45° and 90° oriented laminae.  相似文献   

2.
A two-level optimization method for elastic constants identification of symmetric angle-ply laminates is presented. Measured axial and lateral strains of two symmetric angle-ply laminates with different fiber angles are used in the proposed method to identify four elastic constants of the composite laminates. In the first-level optimization process, the theoretically and experimentally predicted axial and lateral strains of a [(45°/−45°)2]s laminate are used to construct the error function which is a measure of the differences between the experimental and theoretical predictions of the axial and lateral strains. The identification of the material constants is then formulated as a constrained minimization problem in which the best estimates of the shear modulus and Poisson’s ratio of the laminate are determined by making the error function a global minimum. The problem of this level of optimization is then solved using a multi-start global minimization algorithm. In the second-level optimization process, the shear modulus and Poisson’s ratio determined in the previous level of optimization are kept constant while the Young’s moduli of the second angle-ply laminate with fiber angles other than 45° are identified using the same minimization technique that has been used in the previous level. The accuracy of the proposed method are studied by means of a number of numerical examples on the material constants identification of symmetric angle-ply laminates made of different composite materials. Finally, static tensile tests of [(45°/−45°)2]s and [(30°/−30°)2]s laminates made of Gr/ep composite material are performed to measure the strains of the laminates. The experimental data are then used to identify the elastic constants of the laminates. The excellent results obtained in the experimental investigation have demonstrated the feasibility and applications of the proposed method.  相似文献   

3.
A recently developed sandwich plate twist test is employed here for determination of the transverse shear modulus of the core and twist stiffness (D66) of a sandwich panel consisting of a soft (H45 PVC foam) core and glass/vinylester face sheets. The shear modulus of the H45 PVC foam core extracted from the twist test was in good agreement with shear modulus obtained from ASTM plate shear testing of the foam core. D66 values obtained from the sandwich twist test were in good agreement with predictions from classical laminated plate theory. In addition, the twist test was used to determine the in-plane shear modulus of glass/vinylester laminates isolated and as face sheets in sandwich panels with a stiff (plywood) core. The in-plane shear modulus of the face sheets, isolated and as part of a sandwich panel, was in good agreement with shear modulus determined using the Iosipescu shear test. The results point to the potential of the twist test to determine both in-plane and out-of-plane shear moduli of the constituents of a sandwich structure, as well as D66.  相似文献   

4.
This study examined the processing and mechanical properties of cross-ply and quasi-isotropic composite laminates processed using aligned multi-walled carbon nanotube/epoxy prepreg sheets. Three kinds of CNT/epoxy laminates, ([0°/90°]s, [60°/0°/?60°]s, [0°/45°/90°/?45°]s) were successfully fabricated using aligned CNT/epoxy prepreg sheets. The CNT volume fraction was approximately 10%. No visible void or delamination was observed in composite laminates, and the thickness of each layer was almost equal to that of the prepreg. To evaluate the elastic moduli, E11, E22, and G12, of each ply in the laminates, on-axis and off-axis tensile tests (0°, 45°, 90°) were conducted of aligned CNT/epoxy lamina specimens. The Young’s modulus of CNT/epoxy cross-ply and quasi-isotropic laminates agreed with the theoretical values, which were calculated using classical laminate theory and elastic moduli of CNT/epoxy lamina. The respective failure strains of [0°/90°]s, [60°/0°/?60°]s, and [0°/45°/90°/?45°]s laminates are 0.65, 0.92, 0.63%, which are higher than that of 0° composite lamina (0.5%). Results suggest that the failure strain of 0° layer in composite laminates is improved because of the other layers.  相似文献   

5.
复合材料层合板缺口强度的CDM三维数值模型   总被引:1,自引:0,他引:1       下载免费PDF全文
李秋漳  姚卫星  陈方 《复合材料学报》2016,33(12):2766-2774
针对复合材料层合结构缺口强度问题,基于连续损伤力学(CDM)提出了一种三维损伤数值模型。模型区分了层内损伤(纤维失效、纤维间失效)和层间分层损伤的不同失效模式。采用三维Puck准则与Aymerich准则对上述2类损伤进行判定,材料失效后基于CDM中线性软化模型对材料损伤进行演化。模型考虑了复合材料层合板子层的就位效应和剪切非线性行为。对Carlsson的AS4/3501-6缺口拉伸强度试验进行数值模拟。结果表明:分析结果与试验结果吻合良好,证明了该模型能够准确地预测含缺口复合材料层合板面内拉伸强度。   相似文献   

6.
The present paper develops a stiffness-based model to characterize the progressive fatigue damage in quasi-isotropic carbon fiber reinforced polymer (CFRP) [90/±45/0] composite laminates with various stacking sequences. The damage model is constructed based on (i) cracking mechanism and damage progress in matrix (Region I), matrix-fiber interface (Region II) and fiber (Region III) and (ii) corresponding stiffness reduction of unidirectional plies of 90°, 0° and angle-ply laminates of ±45° as the number of cycles progresses. The proposed model accumulates damages of constituent plies constructing [90/±45/0] laminates by means of weighting factor η 90, η 0 and η 45. These weighting factors were defined based on the damage progress over fatigue cycles within the plies 90°, 0° and ±45° of the composite laminates. Damage model has been verified using CFRP [90/±45/0] laminates samples made of graphite/epoxy 3501-6/AS4. Experimental fatigue damage data of [90/±45/0] composite laminates have fell between the predicted damage curves of 0°, 90° plies and ±45°, 0/±45° laminates over life cycles at various stress levels. Predicted damage results for CFRP [90/±45/0] laminates showed good agreement with experimental data. Effect of stacking sequence on the model of stiffness reduction has been assessed and it showed that proposed fatigue damage model successfully recognizes the changes in mechanism of fatigue damage development in quasi-isotropic composite laminates.  相似文献   

7.
A Near Surface Mounted (NSM) strengthening technique was developed to increase the shear resistance of concrete beams. The NSM technique is based on fixing, by epoxy adhesive, Carbon Fiber Reinforced Polymer (CFRP) laminates into pre-cut slits opened in the concrete cover of lateral surfaces of the beams. To assess the efficacy of this technique, an experimental program of four-point bending tests was carried out with reinforced concrete beams failing in shear. Each of the four tested series was composed of five beams: without any shear reinforcement; reinforced with steel stirrups; strengthened with strips of wet lay-up CFRP sheets, applied according to the externally bonded reinforcement (EBR) technique; and two beams strengthened with NSM precured laminates of CFRP, one of them with laminates positioned at 90° and the other with laminates positioned at 45° in relation to the beam axis. Influences of the laminate inclination, beam depth and longitudinal tensile steel reinforcement ratio on the efficacy of the strengthening techniques were analyzed. Amongst the CFRP strengthening techniques, the NSM with laminates at 45° was the most effective, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. The NSM was also faster and easier to apply than the EBR technique. The performance of the ACI and fib analytical formulations for the EBR shear strengthening was appraised. In general, the contribution of the CFRP systems predicted by the analytical formulations was slightly larger than the values registered experimentally. Performance of the formulation by Nanni et al. for NSM strengthening technique was also appraised. Using bond stress and CFRP effective strain values obtained in pullout bending tests with NSM CFRP laminate system, the formulation by Nanni et al. predicted a contribution of this CFRP system for the beam shear resistance of 72% the experimentally recorded values.  相似文献   

8.
《Composites Part A》2003,34(1):93-103
The concept of quasi-isotropic laminates is very well documented in literature. Essentially, the laminate consists of laminae with fibers at equal angular spacing. The theoretical analysis of these laminates, based on the laminate theory, suggests that the elastic properties of the laminate will be isotropic. It is obvious that the theory makes some simplifying assumptions and hence the question remains that if this laminate is not really isotropic then how much anisotropic is it? Presented here is the experimental determination of the elastic modulus of a quasi-isotropic laminate [0/45/−45/90]S by tensile mechanical testing and corroborated by a newly developed automated ultrasonic Lamb wave measurement. The Lamb wave velocity measurement in frequency domain is used to estimate the in-plane elastic constants: elastic modulus and the Poisson's ratio, non-destructively. The ultrasonic method provides a non-invasive and non-damaging method for the measurement.  相似文献   

9.
This paper describes results from tests to examine the influence of through-thickness pinning on in-plane shear behaviour, measured by tensile loading of ±45° specimens. Samples were produced by both aeronautical and marine manufacturing processes. As few previous studies have investigated pinning of marine composites these were also subjected to out-of-plane shear delamination tests. For both carbon/epoxy laminates the pins reduce the apparent in-plane shear modulus and strength. Pins modify the strain field measured by full-field image analysis, and slow damage development. A new damage mechanism, transverse pin cracking, was observed.  相似文献   

10.
《Composites Part A》1999,30(10):1197-1207
The aim of the present work is to study both experimentally and theoretically the compression failure mechanisms in multi-directional composite laminates, and especially the effect of the off-axis ply orientation on fibre microbuckling in the 0°-plies. The critical mechanism in the compressive fracture of unidirectional polymer matrix composites is plastic microbuckling/kinking. In multi-directional composites with internal 0°-plies, catastrophic failure also initiates by kinking of 0°-plies at the free-edges or manufacturing defects, followed by delamination. When 0°-plies are located at the outside, or in the case of cross-ply laminates, failure rather tends to occur by out-of-plane buckling of the 0°-plies. T800/924C carbon-fibre–epoxy laminates with a [(±θ/02)2]s lay-up are used here to study the effect of the supporting ply angle θ on the stress initiation of 0°-fibre microbuckling. Experimental data on the compressive strength of laminates with θ equal to 30, 45, 60 or 75° are compared to theoretical predictions obtained from a fibre kinking model that incorporates interlaminar shear stresses developed at the free edges at (0/θ) interfaces. Initial misalignment of the fibres and non-linear shear behaviour of the matrix are also included in the analysis.  相似文献   

11.
A three dimensional (3D) finite element model is developed to predict the progressive fatigue damage and the life of a plain carbon/epoxy laminate (AS4/3501-6) based on the longitudinal, transverse and in-plane shear fatigue characteristic. The model takes into account stress analysis, fatigue failure analysis, random distribution and material property degradation. Different cross- and angle-ply laminates including [08], [908], [0/902]s, [0/904]s, [02/902]s, [3016], [45/−45]2s with the available experimental data are considered for the fatigue life simulation. In order to consider the random distribution of the laminate’s properties from element to element in the model, the laminate’s stiffness, and strength are randomly generated using a Gaussian distribution function. Sudden and gradual material properties degradation are considered during the fatigue simulation. The progressive fatigue damage and failure analysis is implemented in ABAQUS through user subroutines UMAT (user-defined material) and USDFLD (user-defined field variables). The predicted fatigue life of the simulation for different laminates is in good agreement with the experimental results.  相似文献   

12.
《Composites Part A》2003,34(10):995-1006
An experimental investigation was performed in order to compare the effect of the adhesive strength between fibres and matrix, contra the effect from the degree of impregnation on the mechanical properties of melt impregnated continuous glass fibre—polypropylene composites. Single fibre pull-out tests were performed in order to compare the interfacial bond strength. The degree of impregnation was measured using opacity and scattering from reflected light measurements of the prepregs. The testing included transverse tensile, ±45° tensile, double-notch shear, compression shear and double cantilever beam (DCB). These tests can to a certain degree be given interface relevance (InR) as well as impregnation relevance (ImR). With regard to InR sensitivity, the tests can be ranked in descending order according to prepreg transverse, laminate transverse, intralaminar, and interlaminar double-notch shear tests. With regard to ImR sensitivity, the tests can be ranked in descending order according to prepreg transverse, compressive interlaminar double-notch shear and laminate transverse tests. The measured shear and transverse modulus values showed limited relevance regarding the interface strength and degree of impregnation. The transverse and shear elastic modulus scored low regarding InR and ImR sensitivity. This was also true for the GIC and GICPROP values.  相似文献   

13.
The in-plane shear properties (shear strength τxy and shear modulus Gxy) of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid composites have been investigated experimentally and theoretically. The effect of stacking sequence and random fiber relative volume fraction (VfR/VfT) in hybrid composites were reported. Laminates were fabricated by hand lay-up technique with a total of 5 plies, by varying the number and position of random glass layers so as to obtain four different hybrid laminates; i.e. [0.5R/U/U]S, [U/0.5R/U]S, [U/U/0.5R]S, and [U/R/U/R/U]. All unidirectional fiber laminate [U]5 and another of all random fiber laminate [R]5 were also fabricated for comparison purpose. The average thickness of the manufactured laminates is 5.5 ± 0.2 mm and the total fiber volume fraction (VfT) is 37%. Failure modes of all specimens were investigated. Results indicated that the in-plane shear properties (shear strength τxy and shear modulus Gxy) of unidirectional fiber composite can be considerably improved by incorporation of random glass fiber and forming hybrid composites.  相似文献   

14.
A simple procedure to determine the non-linear in-plane lamina shear response of laminated composites is presented. Using the ±45° symmetric laminate tensile test results, in conjunction with computational micromechanics, a method was developed and validated to characterize the lamina shear response and the in-situ matrix shear response. Load, and axial and transverse strains measured in the tests were used to calculate the non-linear shear stress–shear strain response of the composite. From this result, the in-situ matrix equivalent stress–strain response was obtained, with some simplifying assumptions, and subsequently used in a micromechanics-based representative finite element (FE) model of the ±45° symmetric laminate tensile test to determine the accuracy of the non-linear response of the in-situ matrix. Results from the FE model of a representative cell (RC) that depicts fiber diameter, fiber volume fraction (Vf) and angled fiber packing of the ±45° symmetric laminate were found to match the tests result well. Thus, the procedure to extract the non-linear lamina shear response and the non-linear in-situ matrix response from the ±45° symmetric laminate tensile test was validated.  相似文献   

15.
The present study examines in-plane and out-of-plane shear properties of an orthogonal 3D woven SiC fiber/SiC matrix composite. A composite beam with rectangular cross-section was subjected to a small torsional moment, and the torsional rigidities were measured using an optical lever. Based on the Lekhnitskii’s equation (Saint–Venant torsion theory) for a orthotropic material, the in-plane and out-of-plane shear moduli were simultaneously calculated. The estimated in-plane shear modulus agreed with the modulus measured from ±45° off-axis tensile testing. The effect of on-axis (0°/90°) tensile stress on the shear stiffness properties was also investigated by the repeated torsional tests after step-wise tensile loading. Both in-plane and out-of-plane shear moduli decreased by about 50% with increasing the on-axis tensile stress, and it is mainly due to the transverse crack propagation in 90° fiber bundles and matrix cracking in 0° fiber bundles. It was demonstrated that the torsional test is an effective method to estimate out-of-plane shear modulus of ceramic matrix composites, because a thick specimen is not required.  相似文献   

16.
Cai  Yao  An  Xizhong  Zou  Qingchuan  Fu  Haitao  Yang  Xiaohong  Zhang  Hao 《Journal of Materials Science》2021,56(20):11814-11827

In the design of composite materials, the properties and failure modes/mechanisms are always of the main concern. In this work, the mechanical properties and failure mechanisms of composite laminates with classical fabric stacking patterns ([(0, 90)]8 and [(0, 90)/(±?45)]4) were systematically investigated through mechanical experiments and FEM (finite element method) numerical simulations. The results show that the tensile modulus and bending modulus of the laminates were reduced by 22.2% and 37% after partially changing the stacking angle to?±?45°, but corresponding elongation and bending displacement were increased by 8.8% and 11.7%, respectively. Bending failure mode changes from complete fracture to partial fracture. Meanwhile, the delamination damage and tow peeling from the matrix increase significantly. FEM simulations on tensile and bending processes of the composites indicate that the?±?45° stacking angle leads to the change of the axial stress direction from SX (0°) to SY (±?45°), which is difficult to be observed from mechanical experiments. The FEM simulation provides a cost effective and efficient way for the structural visual optimization design and failure prediction of the actual composite materials.

  相似文献   

17.
The investigation of techniques for the manufacture of hoop wound composite tubes for use as in-plane shear specimens was undertaken. The principle concerns were achieving a smooth surface finish, uniform wall thickness, acceptable laminate consolidation and minimal defects. Filament winding of Hercules AS4/3501-6 12K pre-preg tow was used to manufacture 19 hoop wound thin-walled tubes. Four main vacuum bagging techniques were evaluated. The most successful of these utilized a thin external mild steel sheet together with shrink tape prior to autoclave curing. Ultrasonic C-scan results indicated that the tubes were free of detectable voids and defects. Microscopic analysis showed excellent laminate consolidation and very good geometric tolerances (tube thickness, roundness, concentricity and straightness). Of particular note was the exceptional surface finish and thin axial seam for the final specimens. It was found during torsion testing of the tubes that a thin axial seam was associated with a higher ultimate shear strength. The vacuum bagging techniques are described and discussed in detail.  相似文献   

18.
We present experimental results on 21 different layups of Hercules AS4 carbon fibre/3501-6 epoxy laminates. All laminates had 90 ° plies; some had them in the middle ([(S)/90 n ] s ) while some had them on a free surface ([90 n /(S)] s ). The supporting sublaminates, (S), where [0 n ], [±15], or [±30]. During tensile loading, the first form of damage in all laminates was microcracking of the 90 ° plies. For each laminate we recorded both the crack density and the complete distribution of crack spacings as a function of the applied load. By rearranging various microcracking theories we developed a master-curve approach that permitted plotting the results from all laminates on a single plot. By comparing master-curve plots for different theories it was possible to critically evaluate the quality of those theories. We found that a critical-energy-release-rate criterion calculated using a two-dimensional variational stress analysis gave the best results. All microcracking theories based on a strength-failure criteria gave poor results. All microcracking theories using one-dimensional stress analyses, regardless of the failure criterion, also gave poor results.  相似文献   

19.
In this paper, the microscopic failure behavior of quasi-isotropic carbon fiber-reinforced polyamide-6 (CF/PA6) laminates under tension was investigated experimentally. Laminates of two layups, namely [45°/0°/?45°/ 90°]s and [45°/0°/?45°/ 90°]2s, were made from CF/PA6 tapes of two different manufacturers and then subjected to tensile testing. Crack initiation and progression on the polished free edge of specimens were examined using optical microscopy, under several load levels. Crack growth behavior through the specimen width was also traced by observing the crack configurations in different sections in the specimen width direction. The effects of the spatial distribution of fiber on the microscopic damage events were elucidated. The difference in failure behavior between the present CF/PA6 laminates and conventional thermosetting CF/Epoxy laminate is discussed.  相似文献   

20.
As the improved damping in fiber-reinforced composites can affect the other mechanical properties, therefore, the aim of this work is to investigate the effect of multiwall carbon nanotube (MWCNT) on the interfacial bond strength, flexural strength and stiffness, toughness and damping properties of hybridized glass-fiber reinforced epoxy (GFRE) composites. Nanophased epoxy resin was used to hybridize unidirectional and quasi-isotropic GFRE composites with [0/±45/90]s and [90/±45/0]s stacking sequences. Results from the interfacial characterizations of the hybridized composites showed improvement up to 30% compared to the control laminates. Hybridization of GFRE laminates with MWCNTs leads to decreasing the flexural and storage moduli, increasing flexural strength, toughness, natural frequencies and damping ratio. A high correlation coefficient of 0.9985 was obtained between static flexural and dynamic storage moduli. The highest flexural strength, flexural and storage moduli and natural frequency of quasi-isotropic laminate were observed for [0/±45/90]s stacking sequence and vice versa for damping ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号