共查询到20条相似文献,搜索用时 15 毫秒
1.
针对如何将近邻、子空间学习与稀疏表示结合起来解决稀疏分类计算量较大的问题。由于子空间中样本的类内散度小,类间散度大,且同类中所有样本对重构的影响相似,因此按类而非样本处理的思想更符合基于类重构误差进行分类的算法要求,为此提出一种基于近邻类加权结构稀疏表示算法用于图像识别。该算法首先利用线性类重构误差选取 个最近邻类,并将其对应的系数作为权值对投影后的近邻类加权,其次在投影子空间上,用 个类的加权训练样本集对测试样本进行结构稀疏表示,最后根据最小类重构误差得出分类结果。在AR,Yale B,MNIST,PIE数据库上的实验结果表明该方法在训练样本数较少的情况下获得较高的识别率且具有一定的鲁棒性。 相似文献
2.
3.
多观测样本分类问题中,同一对象的多观测样本均看作一个整体进行识别,其同等看待各个观测样本。考虑到其每个观测样本包含判别信息量不同,针对如何有效利用其可信度问题,提出基于观测样本联合加权稀疏表示多观测样本分类算法。首先将多多观测样本分解成单样本,分别对各个样本进行稀疏求解得到其各自的稀疏度和残差,进而联合二者确定其相应可信度。然后给各观测样本进行可信度加权,重构出加权多观测样本。最后,再采用整体稀疏表示对其进行分类。在ETH-80物体数据库、CMU-PIE人脸数据库和BANCA数据库上进行大量对比实验,实验结果证明该算法的有效性,提高识别精度的同时使算法的鲁棒性得到保证。 相似文献
4.
针对短文本特征稀疏性问题,提出一种熵权约束稀疏表示的短文本分类方法.考虑到初始字典维数较高,首先,利用Word2vec工具将字典中的词表示成词向量形式,然后根据加权向量平均值对原始字典进行降维.其次,利用一种快速特征子集选择算法去除字典中不相关和冗余短文本,得到过滤后的字典.再次,基于稀疏表示理论在过滤后的字典上,为目标函数设计一种熵权约束的稀疏表示方法,引入拉格朗日乘数法求得目标函数的最优值,从而得到每个类的子空间.最后,在学习到的子空间下通过计算待分类短文本与每个类中短文本的距离,并根据三种分类规则对短文本进行分类.在真实数据集上的大量实验结果表明,本文提出的方法能够有效缓解短文本特征稀疏问题且优于现有短文本分类方法. 相似文献
5.
脱婷;马慧芳;李志欣;赵卫中 《电子学报》2020,(11):2131-2137
针对短文本特征稀疏性问题,提出一种熵权约束稀疏表示的短文本分类方法.考虑到初始字典维数较高,首先,利用Word2vec工具将字典中的词表示成词向量形式,然后根据加权向量平均值对原始字典进行降维.其次,利用一种快速特征子集选择算法去除字典中不相关和冗余短文本,得到过滤后的字典.再次,基于稀疏表示理论在过滤后的字典上,为目标函数设计一种熵权约束的稀疏表示方法,引入拉格朗日乘数法求得目标函数的最优值,从而得到每个类的子空间.最后,在学习到的子空间下通过计算待分类短文本与每个类中短文本的距离,并根据三种分类规则对短文本进行分类.在真实数据集上的大量实验结果表明,本文提出的方法能够有效缓解短文本特征稀疏问题且优于现有短文本分类方法. 相似文献
6.
7.
为了克服核稀疏表示分类(KSRC)算法无法获取数据的局部性信息从而导致获取的稀疏表示系数判别性受到限制的不足,提出一种局部敏感的KSRC(LS-KSRC)算法用于人脸识别。通过在核特征空间中同时集成稀疏性和数据局部性信息,从而获取具有良好判别性的用于分类的稀疏表示系数。在标准的ORL人脸数据库和Extended Yale B人脸数据库的试验结果表明,本文方法的分类性能优于传统的(KSRC)算法、稀疏表示分类(SRC)算法、局部线性约束编码(LLC)、支持向量机(SVM)、最近邻法(NN)以及最近邻子空间法(NS),用于人脸识别能够取得优越的分类性能。 相似文献
8.
针对低分辨率、低质量人脸图像重建问题,提出了一种新的基于稀疏表示的人脸超分辨率算法。在训练阶段,人脸的位置特征被用于保持人脸块的全局信息,人脸块间的几何结构被用于保持高低分辨率超完备冗余字典的流形结构,从而提高字典的表达能力;在重建阶段,K近邻加权稀疏表示被用于消除稀疏编码噪声,以提高高分辨率人脸图像重建系数的精度。实验结果表明,提出的方法取得了较好的主客观质量。 相似文献
9.
针对红外空中目标,提出了一种基于稀疏表示的快速分类算法.该工作的技术难点表现在训练样本较少,算法需要具有旋转不变性、较高的抗噪性和实时性.针对这些难点,首先根据红外空中面目标的梯度信息和统计特性,计算出图像主方向,然后将主方向旋转至同一参考方向.接着基于稀疏表示原理,把分类问题转化为1范数最小化问题,最后用快速收敛方法得到分类结果.实验结果表明该方法能够达到98.3%的正确率,给测试图像50%的像素叠加噪声后,分类正确率仍大于80%. 相似文献
10.
合成孔径雷达( SAR)目标分类是自动目标识别系统的核心功能之一,对于战场监视等应用具有重要意义。利用SAR图像局部散射明显的特点,提出了通过训练样本的非负矩阵分解获得低维数局部特征编码,并以该编码作为字典进行稀疏表示分类的方法。采用Gotcha项目民用车辆目标的实测数据进行了验证,结果显示在不同信噪比条件下该方法的分类正确率均优于广泛采用的由降采样、随机投影、主成分分析提取低维数特征的稀疏表示分类方法,表明了该方法的性能优势。另外,还通过实验对比分析了非负约束的稀疏表示与标准稀疏表示在分类性能上的差别,结果显示非负约束的稀疏表示导致分类正确率下降,故针对分类问题不宜在稀疏表示时进行非负约束。 相似文献
11.
12.
13.
目前基于图像块稀疏表示的超分辨率重构算法对所有图像块都用同一字典表示,不能反映不同类型图像块间的差别.针对这一缺点,本文提出基于图像块分类稀疏表示的方法.该方法先利用图像局部特征将图像块分为平滑、边缘和不规则结构三种类型,其中边缘块细分为多个方向.然后利用稀疏表示方法对边缘和不规则结构块分别训练各自对应的低分辨率和高分辨率字典.重构时对平滑块利用简单双三次插值方法,边缘和不规则结构块由其对应的高、低分辨率字典通过正交匹配追踪算法重构.实验结果表明,与单字典稀疏表示算法相比,本文算法对图像边缘部分重构质量明显改善,同时重构速度显著提高. 相似文献
14.
针对训练样本字典学习仅包含全局信息、缺乏局部信息的不足,引入与类别相关的原子字典, 提出基于原子与分子字典联合扩展的加权稀疏表示人脸识别方法。首先,对各类训练样本进行PCA学习,得到带标记的训练样本基,构造PCA基原子字典,同时将训练样本字典作为分子字典。进而,利用原子字典与分子字典结合得到扩展字典模型。测试时,根据测试样本与扩展字典基之间的距离进行加权得到与当前测试样本关联的重构字典集,最后对测试样本稀疏重构,利用残差进行分类判别。为验证本文方法有效性,分别在AR、Georgia Tech和CMU PIE人脸数据库上进行实验。 相似文献
15.
针对图像的非局部稀疏表示忽略图像中结构相似信息的缺点,将群稀疏表示引入到图像的最优滤波中,提出了一种有效去除图像高斯噪声的非局部群稀疏表示模型。该模型首先选择图像非局部相似块构建相似矩阵,在群稀疏限制下对相似矩阵进行正交分解得到正交矩阵;在已知噪声服从高斯分布的情况下,再通过求得的正交矩阵结合贝叶斯最小均方误差准则实现对特征矩阵的最优估计;最后通过正交矩阵与特征矩阵重构去噪后的图像。实验对比证明,所提的非局部群稀疏表示的图像去噪模型在去除噪声的同时更好地保留了图像的结构信息,获得了更好的主客观评价指标,去噪的峰值信噪比提高1 dB以上。 相似文献
16.
针对结构稀疏表示识别算法中稀疏准则的选择以及字典内块的划分两个重要问题,提出两种改进的结构稀疏表示识别算法。首先,针对结构稀疏准则会出现较多系数不为零的情况,提出将结构稀疏准则与原子稀疏准则相结合的思路,包括并行和串行两种结合方式。并行结合是将两者以加权求和的方式同时作为稀疏表示的判别准则进行分类,串行结合则是在结构稀疏表示后,通过重组字典,再对测试样本进行原子稀疏表示实现分类。然后,针对字典中类内样本的块划分问题,提出基于MLP的结构稀疏表示识别算法,先将类内样本经过MLP的划分,保证各个分块分别位于低维的线性子空间中,再进行结构稀疏表示的分类。实验结果证明两种改进的结构稀疏表示识别算法的有效性。 相似文献
17.
随着网络和各类社交媒体的盛行,越来越多的文本信息通过互联网呈现在人们面前。对于海量的文本数据,自然语言处理技术变得越来越实用,新闻文本分类便是其中一项重要的任务,其对制定新闻检索策略、新闻推荐、社会舆情监控等具有积极作用。文章通过分析文本表示模型与分类模型的研究现状,提出一种基于加权Word2Vec和TextCNN的新闻文本分类方法,在新闻文本多分类数据上进行实验。从实验结果上来看,在文本表示模型中,该文方法比TF-IDF模型、Word2Vec模型以及随机词嵌入模型在精确率、召回率和F1值上均有提高;在文本分类模型中,文章使用的TextCNN模型要比传统的机器学习模型以及循环神经网络模型在分类效果以及模型性能方面表现更出色。 相似文献
18.
针对腐化图像恢复不足的问题,提出一种基于PCA的非局部聚类稀疏表示模型.首先,用图像非局部自相似性来取得稀疏系数值;然后,对观测图像的稀疏编码系数进行集中聚类;最后,通过学习字典使降噪图像的稀疏编码系数接近原始图像的编码系数.实验结果表明,提出的方法在重建图像性能上较同类方法有显著提高,获得了更好的图像恢复质量. 相似文献
19.