首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the optimal H, general distance problem, for continuous-time systems, with a prescribed degree on the solution is studied. The approach is based on designing the Hankel singular values using an imbedding idea. The problem is first imbedded into another problem with desirable characteristics on the Hankel singular values, then the solution to the original problem is retracted via a compression. The result is applicable to both the one-block and the four-block problems. A special case is given for illustration.  相似文献   

2.
This study employs the multiple Lyapunov-like function method and the average dwell-time concept of switching signal to investigate the finite-time H static output-feedback (SOF) control problem for a class of discrete-time switched singular time-delay systems subject to actuator saturation. First, sufficient conditions are presented to guarantee the discrete-time switched singular time-delay system regular, causal and finite-time boundedness. Meanwhile, sufficient conditions are presented to ensure the H disturbance attenuation level, and the design method of H SOF controller is developed by solving matrix inequalities optimisation problem without any decompositions of system matrices and equivalent transformation. Finally, the effectiveness and merit of the theoretical results are shown through some numerical examples and several vivid illustrations.  相似文献   

3.
The theory of nonlinear H of optimal control for affine nonlinear systems is extended to the more general context of singular H optimal control of nonlinear systems using ideas from the linear H theory. Our approach yields under certain assumptions a necessary and sufficient condition for solvability of the state feedback singular H control problem. The resulting state feedback is then used to construct a dynamic compensator solving the nonlinear output feedback H control problem by applying the certainty equivalence principle.  相似文献   

4.
In this paper, the problems of delay‐dependent robust stability analysis, robust stabilization and robust H control are investigated for uncertain discrete‐time singular systems with state delay. First, by making use of the delay partitioning technique, a new delay‐dependent criterion is given to ensure the nominal system to be regular, causal and stable. This new criterion is further extended to singular systems with both delay and parameter uncertainties. Then, without the assumption that the considered systems being regular and causal, robust controllers are designed for discrete‐time singular time‐delay systems such that the closed‐loop systems have the characteristics of regularity, causality and asymptotic stability. Moreover, the problem of robust H control is solved following a similar line. The obtained results are dependent not only on the delay, but also on the partitioning size and the conservatism is non‐increasing with reducing partitioning size. These results are shown, via extensive numerical examples, to be much less conservative than the existing results in the literature. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the problem of robust H control for uncertain continuous singular systems with state delay. The singular system under consideration involves state time delay and time‐invariant norm‐bounded uncertainty. Based on the linear matrix inequality (LMI) approach, we design a memoryless state feedback controller law, which guarantees that, for all admissible uncertainties, the resulting closed‐loop system is not only regular, impulse free and stable, but also meets an H‐norm bound constraint on disturbance attenuation. A numerical example is provided to demonstrate the applicability of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, considering the design problem of decentralised H controller of singular systems, the two cases of controllers via measurement feedback are designed: one is precise controller, and the other is additive controller gain variation. The design procedures of the two cases of controllers are presented in terms of the solutions to generalised algebraic Riccati inequalities. The designed controllers in each case guarantee that closed-loop singular systems are admissible and with H -norm bound on disturbance attenuation. Finally, a numerical example to demonstrate the validity of the proposed approach is given.  相似文献   

7.
In this article, finite impulse response (FIR) control is addressed for H output feedback stabilisation of linear systems. The problem we deal with is the construction of an output feedback controller with a certain FIR structure such that the resulting closed-loop system is asymptotically stable and a prescribed H norm bound constraint is guaranteed. Some solvability conditions are suggested in this article. Sufficient conditions are derived to obtain a suboptimal solution of the H FIR control problem via convex optimisation. Also, an equivalent condition for the existence of H FIR control is presented in the set of linear matrix inequalities (LMIs) and a reciprocal matrices equality constraint. An effective computational algorithm involving LMIs is suggested to solve a concave minimisation problem characterising a local optimal solution of the H FIR control problem. Numerical examples demonstrate the validity of the proposed H FIR control and the numerical efficiency of the proposed algorithm for FIR control.  相似文献   

8.
This paper is concerned with the delay‐dependent H filtering problem for singular systems with time‐varying delay in a range. In terms of linear matrix inequality approach, the delay‐range‐dependent bounded real lemmas are proposed, which guarantee the considered system to be regular, impulse free and exponentially stable while satisfying a prescribed H performance level. The sufficient conditions are proposed for the existence of linear H filter. Numerical examples are given to demonstrate the effectiveness and the benefits of the proposed methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
The continuous- and discrete-time H control problems are solved via elementary manipulations on linear matrix inequalities (LMI). Two interesting new features emerge through this approach: solvability conditions valid for both regular and singular problems, and an LMI-based parametrization of all H-suboptimal controllers, including reduced-order controllers. The solvability conditions involve Riccati inequalities rather than the usual indefinite Riccati equations. Alternatively, these conditions can be expressed as a system of three LMIs. Efficient convex optimization techniques are available to solve this system. Moreover, its solutions parametrize the set of H controllers and bear important connections with the controller order and the closed-loop Lyapunov functions. Thanks to such connections, the LMI-based characterization of H controllers opens new perspectives for the refinement of H design. Applications to cancellation-free design and controller order reduction are discussed and illustrated by examples.  相似文献   

10.
This paper deals with the H filtering problem for a class of discrete-time nonlinear systems with or without real time-varying parameter uncertainty and unknown initial state. For the case when there is no parametric uncertainty in the system, we are concerned with designing a nonlinear H filter such that the induced l2 norm of the mapping from the noise signal to the estimation error is within a specified bound. It is shown that this problem can be solved via one Riccati equation. We also consider the design of nonlinear filters which guarantee a prescribed H performance in the presence of parametric uncertainties. In this situation, a solution is obtained in terms of two Riccati equations.  相似文献   

11.
The robust stochastic stability, stabilization and H control for mode‐dependent time‐delay discrete Markovian jump singular systems with parameter uncertainties are discussed. Based on the restricted system equivalent (r.s.e.) transformation and by introducing new state vectors, the singular system is transformed into a standard linear system, and delay‐dependent linear matrix inequalities (LMIs) conditions for the mode‐dependent time‐delay discrete Markovian jump singular systems to be regular, causal and stochastically stable, and stochastically stable with γ‐disturbance attenuation are obtained, respectively. With these conditions, robust stabilization problem and robust H control problem are solved, and the LMIs sufficient conditions are obtained. A numerical example illustrates the effectiveness of the method given in the paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The stochastic finite‐time H filtering issue for a class of nonlinear continuous‐time singular semi‐Markov jump systems is discussed in this paper. Firstly, sufficient conditions on singular stochastic H finite‐time boundedness for the filtering error system are established. The existence of a unique solution for the corresponding system is also ensured. Secondly, based on the bounds of the time‐varying transition rate, without imposing constraints on slack variables, a novel approach to finite‐time H filter design is proposed in the forms of strict LMIs, which guarantees the filtering error system is singular stochastic H finite‐time bounded and of a unique solution. Compared with the existing ones, the presented results reveal less conservativeness. Finally, one numerical example is exploited to testify the advantage of the proposed design technique.  相似文献   

13.
In this paper, a robust H control problem is considered for an uncertain singular system. An active disturbance rejection method called equivalent input disturbance (EID) is used to reduce the influence of exogenous disturbances and uncertainties on the system. At the first, there exists an EID, which can produces the same effect on the system as disturbances and uncertainties do in the control channel according to the EID concept. Then, an EID estimator is constructed to estimate the influence of EID on the system. Finally, based on Lyapunov stability theory, a static output feedback‐based robust H controller combined with EID estimate is designed, guaranteeing that closed‐loop system is admissible (regular, impulse‐free, and stable) with a prescribed H performance level. Compared with traditional H control method, H control based on EID method improve the control performance of the system. A numerical example demonstrates the validity of the method.  相似文献   

14.
This paper concerns the problem of robust H sliding mode control for a class of singular stochastic nonlinear systems. Integral sliding mode control is developed to deal with this problem. Based on the integral sliding surface of the design and linear matrix inequality, a sufficient condition which guarantees the sliding mode dynamics is asymptotically mean square admissible and has a prescribed H performance for a class of singular stochastic nonlinear systems is proposed. Furthermore, a sliding mode control law is synthesized such that the singular stochastic nonlinear system can be driven to the sliding surface in finite time. Finally, a numerical example is proposed to illustrate the effectiveness of the given theoretical results.  相似文献   

15.
This paper is concerned with establishing a delay‐dependent bounded real lemma (BRL) for singular systems with a time delay. Without resorting to any bounding techniques for some cross terms and model transformation, a new version of BRL for such systems is proposed, which guarantees a singular system to be regular, impulse free and stable while satisfying a prescribed H performance level for any delays smaller than a given upper bound. Based on this, an H state feedback controller is designed via a linear matrix inequality approach. The BRL, stability as well as H results developed in this paper are less conservative than existing ones in the literature, which is demonstrated by providing some numerical examples. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
In this article, the problem of H filter design is investigated for discrete-time singular networked systems with both multiple stochastic time-varying communication delays and probabilistic missing measurements. Two kinds of stochastic time-varying communication delays, namely stochastic discrete delays and stochastic distributed delays, are simultaneously considered. The purpose of the addressed filtering problem is to design a filter such that, for the admissible random measurement missing and communication delays, the filtering error dynamics is asymptotically stable in the mean square with a prescribed H performance index. In terms of linear matrix inequality (LMI) method, a sufficient condition is established that ensures the asymptotical stability in the mean square with a prescribed H performance index of the filtering error dynamics and then the filter parameters are characterised by the solution to an LMI. A numerical example is introduced to demonstrate the effectiveness of the proposed design procedures.  相似文献   

17.
This paper investigates the problem of reliable finite-time H control for one class of uncertainsingular nonlinear Markovian jump systems with time-varying delay subject to partial information on the transition probabilities. Continuous fault model is more general and practical to serve as the actuator fault. Time delay is a kind of positive time-varying differentiable bounded delays. First, based on a state estimator the resulting closed-loop error system is constructed and sufficient criteria are provided to guarantee that the augmented system is singular stochastic finite-time boundedness and singular stochastic H finite-time boundedness in both normal and fault cases via constructing a delay-dependent Lyapunov–Krasonskii function. Then, the gain matrices of state-feedback controller and state estimator are fixed by solving a feasibility problem in terms of linear matrix inequalities through decoupling technique, respectively. Finally, numerical examples are given to show the validity of the proposed design approach.  相似文献   

18.
This paper investigates the problem of simultaneous robust normalization and delay‐dependent H control for a class of singular time‐delay systems with uncertainties. Not only the state and input matrices but also the derivative matrices of the considered systems are assumed to have uncertainties. New sufficient conditions for the existence of a proportional plus derivative state feedback H controller are derived as LMIs such that the closed‐loop singular system is normal, stable, and guarantee a specific level of performance. Specially, a static state feedback H controller alone or a state‐derivative feedback H controller alone can unite to be dealt with by applying our proposed method. Two simulation examples are provided to demonstrate the effectiveness of the proposed approach in this paper. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
This article considers the problem of H control for two-dimensional (2-D) singular delayed systems in Roesser models. The problem to be addressed is the design of a state feedback controller such that the acceptability, internal stability and causality of the resulting closed-loop system is guaranteed and a prescribed H performance level is ensured. In terms of a linear matrix inequality (LMI), a sufficient condition for the solvability of the problem is obtained. A desired state feedback controller can be designed by solving a certain LMI. A numerical example is provided to demonstrate the application of the proposed method.  相似文献   

20.
吴争光  苏宏业  褚健 《自动化学报》2009,35(8):1101-1106
讨论广义时滞系统的时滞依赖控制问题. 基于线性矩阵不等式(LMI)方法和增广Lyapunov泛函, 给出保证系统正则、无脉冲、稳定且满足性能指标的时滞依赖有界实引理. 在此引理的基础上, 给出基于严格LMI的状态反馈控制器存在的时滞依赖条件. 同时给出所需状态反馈控制器的明确表示. 数值例子表明本文的结果改进了已有结论的保守性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号