首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cancer is a disorder of cell growth and proliferation, characterized by different metabolic pathways within normal cells. The Warburg effect is a major metabolic process in cancer cells that affects the cellular responses, such as proliferation and apoptosis. Various signaling factors down/upregulate factors of the glycolysis pathway in cancer cells, and these signaling factors are ubiquitinated/deubiquitinated via the ubiquitin–proteasome system (UPS). Depending on the target protein, DUBs act as both an oncoprotein and a tumor suppressor. Since the degradation of tumor suppressors and stabilization of oncoproteins by either negative regulation by E3 ligases or positive regulation of DUBs, respectively, promote tumorigenesis, it is necessary to suppress these DUBs by applying appropriate inhibitors or small molecules. Therefore, we propose that the DUBs and their inhibitors related to the Warburg effect are potential anticancer targets.  相似文献   

2.
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.  相似文献   

3.
Different functional states determine glioblastoma (GBM) heterogeneity. Brain cancer cells coexist with the glial cells in a functional syncytium based on a continuous metabolic rewiring. However, standard glioma therapies do not account for the effects of the glial cells within the tumor microenvironment. This may be a possible reason for the lack of improvements in patients with high-grade gliomas therapies. Cell metabolism and bioenergetic fitness depend on the availability of nutrients and interactions in the microenvironment. It is strictly related to the cell location in the tumor mass, proximity to blood vessels, biochemical gradients, and tumor evolution, underlying the influence of the context and the timeline in anti-tumor therapeutic approaches. Besides the cancer metabolic strategies, here we review the modifications found in the GBM-associated glia, focusing on morphological, molecular, and metabolic features. We propose to analyze the GBM metabolic rewiring processes from a systems biology perspective. We aim at defining the crosstalk between GBM and the glial cells as modules. The complex networking may be expressed by metabolic modules corresponding to the GBM growth and spreading phases. Variation in the oxidative phosphorylation (OXPHOS) rate and regulation appears to be the most important part of the metabolic and functional heterogeneity, correlating with glycolysis and response to hypoxia. Integrated metabolic modules along with molecular and morphological features could allow the identification of key factors for controlling the GBM-stroma metabolism in multi-targeted, time-dependent therapies.  相似文献   

4.
In spite of the continuous improvement in our knowledge of the nature of cancer, the causes of its formation and the development of new treatment methods, our knowledge is still incomplete. A key issue is the difference in metabolism between normal and cancer cells. The features that distinguish cancer cells from normal cells are the increased proliferation and abnormal differentiation and maturation of these cells, which are due to regulatory changes in the emerging tumour. Normal cells use oxidative phosphorylation (OXPHOS) in the mitochondrion as a major source of energy during division. During OXPHOS, there are 36 ATP molecules produced from one molecule of glucose, in contrast to glycolysis which provides an ATP supply of only two molecules. Although aerobic glucose metabolism is more efficient, metabolism based on intensive glycolysis provides intermediate metabolites necessary for the synthesis of nucleic acids, proteins and lipids, which are in constant high demand due to the intense cell division in cancer. This is the main reason why the cancer cell does not “give up” on glycolysis despite the high demand for energy in the form of ATP. One of the evolving trends in the development of anti-cancer therapies is to exploit differences in the metabolism of normal cells and cancer cells. Currently constructed therapies, based on cell metabolism, focus on the attempt to reprogram the metabolic pathways of the cell in such a manner that it becomes possible to stop unrestrained proliferation.  相似文献   

5.
In order to meet the high energy demand, a metabolic reprogramming occurs in cancer cells. Its role is crucial in promoting tumor survival. Among the substrates in demand, oxygen is fundamental for bioenergetics. Nevertheless, tumor microenvironment is frequently characterized by low-oxygen conditions. Hypoxia-inducible factor 1 (HIF-1) is a pivotal modulator of the metabolic reprogramming which takes place in hypoxic cancer cells. In the hub of cellular bioenergetics, mitochondria are key players in regulating cellular energy. Therefore, a close crosstalk between mitochondria and HIF-1 underlies the metabolic and functional changes of cancer cells. Noteworthy, HIF-1 represents a promising target for novel cancer therapeutics. In this review, we summarize the molecular mechanisms underlying the interplay between HIF-1 and energetic metabolism, with a focus on mitochondria, of hypoxic cancer cells.  相似文献   

6.
Prostate cancer is a leading cause of cancer-associated deaths in men over 60 years of age. Most patients are killed by tumor metastasis. Recent evidence has implicated a role of the tumor microenvironment and urokinase plasminogen activator (uPA) in cancer cell migration, invasion, and metastasis. Here, we examine the role of the Na+/H+ exchanger isoform 1 (NHE1) and uPA in DU 145 prostate cancer cell migration and colony formation. Knockout of NHE1 reduced cell migration. The effects of a series of novel NHE1/uPA hexamethylene-amiloride-based inhibitors with varying efficacy towards NHE1 and uPA were examined on prostate cancer cells. Inhibition of NHE1—alone, or with inhibitors combining NHE1 or uPA inhibition—generally did not prevent prostate cancer cell migration. However, uPA inhibition—but not NHE1 inhibition—prevented anchorage-dependent colony formation. Application of inhibitors at concentrations that only saturate uPA inhibition decreased tumor invasion in vivo. The results suggest that while knockout of NHE1 affects cell migration, these effects are not due to NHE1-dependent proton translocation. Additionally, while neither NHE1 nor uPA activity was critical in cell migration, only uPA activity appeared to be critical in anchorage-dependent colony formation of DU 145 prostate cancer cells and invasion in vivo.  相似文献   

7.
Mitochondrial metabolism is an attractive target for cancer therapy. Reprogramming metabolic pathways can potentially sensitize tumors with limited treatment options, such as triple-negative breast cancer (TNBC), to chemo- and/or radiotherapy. Dichloroacetate (DCA) is a specific inhibitor of the pyruvate dehydrogenase kinase (PDK), which leads to enhanced reactive oxygen species (ROS) production. ROS are the primary effector molecules of radiation and an increase hereof will enhance the radioresponse. In this study, we evaluated the effects of DCA and radiotherapy on two TNBC cell lines, namely EMT6 and 4T1, under aerobic and hypoxic conditions. As expected, DCA treatment decreased phosphorylated pyruvate dehydrogenase (PDH) and lowered both extracellular acidification rate (ECAR) and lactate production. Remarkably, DCA treatment led to a significant increase in ROS production (up to 15-fold) in hypoxic cancer cells but not in aerobic cells. Consistently, DCA radiosensitized hypoxic tumor cells and 3D spheroids while leaving the intrinsic radiosensitivity of the tumor cells unchanged. Our results suggest that although described as an oxidative phosphorylation (OXPHOS)-promoting drug, DCA can also increase hypoxic radioresponses. This study therefore paves the way for the targeting of mitochondrial metabolism of hypoxic cancer cells, in particular to combat radioresistance.  相似文献   

8.
Triple negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer with the worst prognosis after chemo- or radiation therapy. This is mainly due to the development of cancer chemoresistance accompanied by tumor recurrence. In this work, we investigated a new mechanism of acquired chemoresistance of TNBC cells. We showed that extracellular vehicles (EVs) of chemoresistant TNBC cells can transfer mitochondria to sensitive cancer cells, thus increasing their chemoresistance. Such transfer, but with less efficiency, can be carried out over short distances using tunneling nanotubes. In addition, we showed that exosome fractions carrying mitochondria from resistant TNBC cells contribute to acquired chemoresistance by increasing mtDNA levels with mutations in the mtND4 gene responsible for tumorigenesis. Blocking mitochondrial transport by exosome inhibitors, including GW4869, reduced acquired TNBC chemoresistance. These results could lead to the identification of new molecular targets necessary for more effective treatment of this type of cancer.  相似文献   

9.
Apoptotic cells stimulate compensatory proliferation through the caspase-3-cPLA-2-COX-2-PGE-2-STAT3 Phoenix Rising pathway as a healing process in normal tissues. Phoenix Rising is however usurped in cancer, potentially nullifying pro-apoptotic therapies. Cytotoxic therapies also promote cancer cell plasticity through epigenetic reprogramming, leading to epithelial-to-mesenchymal-transition (EMT), chemo-resistance and tumor progression. We explored the relationship between such scenarios, setting-up an innovative, straightforward one-pot in vitro model of therapy-induced prostate cancer repopulation. Cancer (castration-resistant PC3 and androgen-sensitive LNCaP), or normal (RWPE-1) prostate cells, are treated with etoposide and left recovering for 18 days. After a robust apoptotic phase, PC3 setup a coordinate tissue-like response, repopulating and acquiring EMT and chemo-resistance; repopulation occurs via Phoenix Rising, being dependent on high PGE-2 levels achieved through caspase-3-promoted signaling; epigenetic inhibitors interrupt Phoenix Rising after PGE-2, preventing repopulation. Instead, RWPE-1 repopulate via Phoenix Rising without reprogramming, EMT or chemo-resistance, indicating that only cancer cells require reprogramming to complete Phoenix Rising. Intriguingly, LNCaP stop Phoenix-Rising after PGE-2, failing repopulating, suggesting that the propensity to engage/complete Phoenix Rising may influence the outcome of pro-apoptotic therapies. Concluding, we established a reliable system where to study prostate cancer repopulation, showing that epigenetic reprogramming assists Phoenix Rising to promote post-therapy cancer repopulation and acquired cell-resistance (CRAC).  相似文献   

10.
The glucose transporter GLUT1 is frequently overexpressed in most tumor tissues because rapidly proliferating cancer cells rely primarily on glycolysis, a low‐efficiency metabolic pathway that necessitates a very high rate of glucose consumption. Because blocking GLUT1 is a promising anticancer strategy, we developed a novel class of GLUT1 inhibitors based on the 4‐aryl‐substituted salicylketoxime scaffold. Some of these compounds are efficient inhibitors of glucose uptake in lung cancer cells and have a notable antiproliferative effect. In contrast to their 5‐aryl‐substituted regioisomers, the newly synthesized compounds reported herein do not display significant binding to the estrogen receptors. The inhibition of glucose uptake in cancer cells by these compounds was further observed by fluorescence microscopy imaging using a fluorescent analogue of glucose. Therefore, blocking the ability of tumor cells to take up glucose by means of these small molecules, or by further optimized derivatives, may be a successful approach in the development of novel anticancer drugs.  相似文献   

11.
Tumor-specific metabolic adaptations offer an interesting therapeutic opportunity to selectively destroy cancer cells. However, solid tumors also present gradients of nutrients and waste products across the tumor mass, forcing tumor cells to adapt their metabolism depending on nutrient availability in the surrounding microenvironment. Thus, solid tumors display a heterogenous metabolic phenotype across the tumor mass, which complicates the design of effective therapies that target all the tumor populations present. In this work, we used a microfluidic device to study tumor metabolic vulnerability to several metabolic inhibitors. The microdevice included a central chamber to culture tumor cells in a three-dimensional (3D) matrix, and a lumen in one of the chamber flanks. This design created an asymmetric nutrient distribution across the central chamber, generating gradients of cell viability. The results revealed that tumor cells located in a nutrient-enriched environment showed low to no sensitivity to metabolic inhibitors targeting glycolysis, fatty acid oxidation, or oxidative phosphorylation. Conversely, when cell density inside of the model was increased, compromising nutrient supply, the addition of these metabolic inhibitors disrupted cellular redox balance and led to tumor cell death.  相似文献   

12.
Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition.  相似文献   

13.
Prostate cancer ranks fifth in cancer-related mortality in men worldwide. DNA damage is implicated in cancer and DNA damage response (DDR) pathways are in place against this to maintain genomic stability. Impaired DDR pathways play a role in prostate carcinogenesis and germline or somatic mutations in DDR genes have been found in both primary and metastatic prostate cancer. Among these, BRCA mutations have been found to be especially clinically relevant with a role for germline or somatic testing. Prostate cancer with DDR defects may be sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors which target proteins in a process called PARylation. Initially they were used to target BRCA-mutated tumor cells in a process of synthetic lethality. However, recent studies have found potential for PARP inhibitors in a variety of other genetic settings. In this review, we explore the mechanisms of DNA repair, potential for genomic analysis of prostate cancer and therapeutics of PARP inhibitors along with their safety profile.  相似文献   

14.
Upregulation of the HGF and MSP growth‐factor processing serine endopeptidases HGFA, matriptase and hepsin is correlated with increased metastasis in multiple tumor types driven by c‐MET or RON kinase signaling. We rationally designed P1’ α‐ketobenzothiazole mechanism‐based inhibitors of these proteases. Structure–activity studies are presented, which resulted in the identification of potent inhibitors with differential selectivity. The tetrapeptide inhibitors span the P1–P1’ substrate cleavage site via a P1’ amide linker off the benzothiazole, occupying the S3’ pocket. Optimized inhibitors display sub‐nanomolar enzyme inhibition against one, two, or all three of HGFA, matriptase, and hepsin. Several compounds also have good selectivity against the related trypsin‐like proteases, thrombin and Factor Xa. Finally, we show that inhibitors block the fibroblast (HGF)‐mediated migration of invasive DU145 prostate cancer cells. In addition to prostate cancer, breast, colon, lung, pancreas, gliomas, and multiple myeloma tumors all depend on HGF and MSP for tumor survival and progression. Therefore, these unique inhibitors have potential as new therapeutics for a diverse set of tumor types.  相似文献   

15.
Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to distant organs. Bradykinin (BK) is an inflammatory mediator and has recently been shown to mediate tumor growth and metastasis. The adhesion molecule intercellular adhesion molecule-1 (ICAM-1) plays a critical role during tumor metastasis. The aim of this study was to examine whether BK promotes prostate cancer cell migration via ICAM-1 expression. The motility of cancer cells was increased following BK treatment. Stimulation of prostate cancer cells with BK induced mRNA and protein expression of ICAM-1. Transfection of cells with ICAM-1 small interfering RNA reduced BK-increased cell migration. Pretreatment of prostate cancer cells with B2 receptor, phosphatidylinositol 3-kinase (PI3K), Akt, and activator protein 1 (AP-1) inhibitors or mutants abolished BK-promoted migration and ICAM-1 expression. In addition, treatment with a B2 receptor, PI3K, or Akt inhibitor also reduced BK-mediated AP-1 activation. Our results indicate that BK enhances the migration of prostate cancer cells by increasing ICAM-1 expression through a signal transduction pathway that involves the B2 receptor, PI3K, Akt, and AP-1. Thus, BK represents a promising new target for treating prostate cancer metastasis.  相似文献   

16.
Glycolysis is considered a main metabolic pathway in highly proliferative cells, including endothelial, epithelial, immune, and cancer cells. Although oxidative phosphorylation (OXPHOS) is more efficient in ATP production per mole of glucose, proliferative cells rely predominantly on aerobic glycolysis, which generates ATP faster compared to OXPHOS and provides anabolic substrates to support cell proliferation and migration. Cellular metabolism, including glucose metabolism, is under strong circadian control. Circadian clocks control a wide array of metabolic processes, including glycolysis, which exhibits a distinct circadian pattern. In this review, we discuss circadian regulations during metabolic reprogramming and key steps of glycolysis in activated, highly proliferative cells. We suggest that the inhibition of metabolic reprogramming in the circadian manner can provide some advantages in the inhibition of oxidative glycolysis and a chronopharmacological approach is a promising way to treat diseases associated with up-regulated glycolysis.  相似文献   

17.
Immunotherapeutic treatment approaches are now an integral part of the treatment of many solid tumors. However, attempts to integrate immunotherapy into the treatment of prostate cancer have been disappointing so far. This is due to a highly immunosuppressive, “cold” tumor microenvironment, which is characterized, for example, by the absence of cytotoxic T cells, an increased number of myeloid-derived suppressor cells or regulatory T cells, a decreased number of tumor antigens, or a defect in antigen presentation. The consequence is a reduced efficacy of many established immunotherapeutic treatments such as checkpoint inhibitors. However, a growing understanding of the underlying mechanisms of tumor–immune system interactions raises hopes that immunotherapeutic strategies can be optimized in the future. The aim of this review is to provide an overview of the current status and future directions of immunotherapy development in prostate cancer. Background information on immune response and tumor microenvironment will help to better understand current therapeutic strategies under preclinical and clinical development.  相似文献   

18.
Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much has been written about the role of mitochondria in the initiation and/or progression of various forms of cancer, and the possibility of exploiting differences in mitochondrial structure and function between normal and malignant cells as targets for cancer chemotherapy. A number of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing, including those that induce mitochondria permeability transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none has exhibited the standards for high selectivity and efficacy and low toxicity necessary to progress beyond phase III clinical trials and be used as a viable, single modality treatment option for human cancers. This review explores alternative treatment strategies that have been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the mitochondrion as a target for cancer chemotherapy.  相似文献   

19.
Spermine, a member of polyamines, exists in all organisms and is essential for normal cell growth and function. It is highly expressed in the prostate compared with other organs and is detectable in urine, tissue, expressed prostatic secretions, and erythrocyte. A significant reduction of spermine level was observed in prostate cancer (PCa) tissue compared with benign prostate tissue, and the level of urinary spermine was also significantly lower in men with PCa. Decreased spermine level may be used as an indicator of malignant phenotype transformation from normal to malignant tissue in prostate. Studies targeting polyamines and key rate-limiting enzymes associated with spermine metabolism as a tool for PCa therapy and chemoprevention have been conducted with various polyamine biosynthesis inhibitors and polyamine analogues. The mechanism between spermine and PCa development are possibly related to the regulation of polyamine metabolism, cancer-driving pathways, oxidative stress, anticancer immunosurveillance, and apoptosis regulation. Although the specific mechanism of spermine in PCa development is still unclear, ongoing research in spermine metabolism and its association with PCa pathophysiology opens up new opportunities in the diagnostic and therapeutic roles of spermine in PCa management.  相似文献   

20.
PSMD14, a subunit of the 19S regulatory particles of the 26S proteasome, was recently identified as a potential prognostic marker and therapeutic target in diverse human cancers. Here, we show that the silencing and pharmacological blockade of PSMD14 in MDA-MB 435S breast cancer cells induce paraptosis, a non-apoptotic cell death mode characterized by extensive vacuolation derived from the endoplasmic reticulum (ER) and mitochondria. The PSMD14 inhibitor, capzimin (CZM), inhibits proteasome activity but differs from the 20S proteasome subunit-inhibiting bortezomib (Bz) in that it does not induce aggresome formation or Nrf1 upregulation, which underlie Bz resistance in cancer cells. In addition to proteasome inhibition, the release of Ca2+ from the ER into the cytosol critically contributes to CZM-induced paraptosis. Induction of paraptosis by targeting PSMD14 may provide an attractive therapeutic strategy against cancer cells resistant to proteasome inhibitors or pro-apoptotic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号