首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
α-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson’s disease (PD), the second most common neurodegeneration disease with no effective treatment. However, how α-syn drives the pathology of PD remains elusive. Recent studies suggest that α-syn oligomers are the primary cause of neurotoxicity and play a critical role in PD. In this review, we discuss the process of α-syn oligomers formation and the current understanding of the structures of oligomers. We also describe seed and propagation effects of oligomeric forms of α-syn. Then, we summarize the mechanism by which α-syn oligomers exert neurotoxicity and promote neurodegeneration, including mitochondrial dysfunction, endoplasmic reticulum stress, proteostasis dysregulation, synaptic impairment, cell apoptosis and neuroinflammation. Finally, we investigate treatment regimens targeting α-syn oligomers at present. Further research is needed to understand the structure and toxicity mechanism of different types of oligomers, so as to provide theoretical basis for the treatment of PD.  相似文献   

3.
We investigated the potential association between integrin α7 (ITGA7) and alpha-synuclein (α-syn) in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) mouse model. Tyrosine hydroxylase (TH), ITGA7, and α-syn expression in the substantia nigra (SN) of the brain were observed to examine the pathological characteristics of PD. To determine the relationship between ITGA7 and PD, the expression of TH and α-syn was investigated after ITGA7 siRNA knockdown in SH-SY5Y cells. The ITGA7 microarray signal was decreased in the SN of the MPTP group, indicating reduced ITGA7 expression compared to that in the control. The expression patterns of ITGA7 in the control group and those of α-syn in the MPTP group were similar on immunohistochemical staining. Reduction in ITGA7 expression by ITGA7 siRNA administration induced a decrease in TH expression and an increase in α-syn expression in SH-SY5Y cells. The decreased expression of ITGA7 significantly decreased the expression of bcl2 and increased the bax/bcl2 ratio in SH-SY5Y cells. These results suggest that reduced ITGA7 expression may be related to increased α-syn expression and apoptosis of dopaminergic cells in an MPTP-induced PD mouse model. To the best of our knowledge, this is the first study to show an association between ITGA7 and PD.  相似文献   

4.
The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-β (Aβ) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aβ toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn’s non-amyloid-β component (NAC) and Aβ’s C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn’s deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01–1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of −118.049 kcal/mol and −114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.  相似文献   

5.
Parkinson’s disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different biological signaling pathways. In this study, we evaluated the therapeutic role of NI-hADSC-conditioned medium (NI-hADSC-CM) in rotenone (ROT)-induced toxicity in SH-SY5Y cells. Increasing concentrations of ROT led to decreased cell survival at 24 and 48 h in a dose- and time-dependent manner. Treatment of NI-hADSC-CM (50% dilution in DMEM) against ROT (0.5 μM) significantly increased the cell survival. ROT toxicity decreased the expression of tyrosine hydroxylase (TH). Western blot analysis of the Triton X-100-soluble fraction revealed that ROT significantly decreased the oligomeric, dimeric, and monomeric phosphorylated Serine129 (p-S129) α-syn, as well as the total monomeric α-syn expression levels. ROT toxicity increased the oligomeric, but decreased the dimeric and monomeric p-S129 α-syn expression levels. Total α-syn expression (in all forms) was increased in the Triton X-100-insoluble fraction, compared to the control. NI-hADSC-CM treatment enhanced the TH expression, stabilized α-syn monomers, reduced the levels of toxic insoluble p-S129 α-syn, improved the expression of neuronal functional proteins, regulated the Bax/Bcl-2 ratio, and upregulated the expression of pro-caspases, along with PARP-1 inactivation. Moreover, hADSC-CM treatment decreased the cell numbers and have no effect against ROT toxicity on SH-SY5Y cells. The therapeutic effects of NI-hADSC-CM was higher than the beneficial effects of hADSC-CM on cellular signaling. From these results, we conclude that NI-hADSC-CM exerts neuroregenerative effects on ROT-induced PD-like impairments in SH-SY5Y cells.  相似文献   

6.
Pleiotrophin (PTN) is a neurotrophic factor that regulates glial responses in animal models of different types of central nervous system (CNS) injuries. PTN is upregulated in the brain in different pathologies characterized by exacerbated neuroinflammation, including Parkinson’s disease. PTN is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, which is abundantly expressed in the CNS. Using a specific inhibitor of RPTPβ/ζ (MY10), we aimed to assess whether the PTN/RPTPβ/ζ axis is involved in neuronal and glial injury induced by the toxin MPP+. Treatment with the RPTPβ/ζ inhibitor MY10 alone decreased the viability of both SH-SY5Y neuroblastoma cells and BV2 microglial cultures, suggesting that normal RPTPβ/ζ function is involved in neuronal and microglial viability. We observed that PTN partially decreased the cytotoxicity induced by MPP+ in SH-SY5Y cells underpinning the neuroprotective function of PTN. However, MY10 did not seem to modulate the SH-SY5Y cell loss induced by MPP+. Interestingly, we observed that media from SH-SY5Y cells treated with MPP+ and MY10 decreases microglial viability but may elicit a neuroprotective response of microglia by upregulating Ptn expression. The data suggest a neurotrophic role of microglia in response to neuronal injury through upregulation of Ptn levels.  相似文献   

7.
Parkinson’s disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid–protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.  相似文献   

8.
9.
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.  相似文献   

10.
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.  相似文献   

11.
The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson’s disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.  相似文献   

12.
Parkinson’s disease (PD) is considered the most common disorder of synucleinopathy, which is characterised by intracellular inclusions of aggregated and misfolded α-synuclein (α-syn) protein in various brain regions, and the loss of dopaminergic neurons. During the early prodromal phase of PD, synaptic alterations happen before cell death, which is linked to the synaptic accumulation of toxic α-syn specifically in the presynaptic terminals, affecting neurotransmitter release. The oligomers and protofibrils of α-syn are the most toxic species, and their overexpression impairs the distribution and activation of synaptic proteins, such as the SNARE complex, preventing neurotransmitter exocytosis and neuronal synaptic communication. In the last few years, the role of the immune system in PD has been increasingly considered. Microglial and astrocyte activation, the gene expression of proinflammatory factors, and the infiltration of immune cells from the periphery to the central nervous system (CNS) represent the main features of the inflammatory response. One of the actors of these processes is α-syn accumulation. In light of this, here, we provide a systematic review of PD-related α-syn and inflammation inter-players.  相似文献   

13.
Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson’s disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) “cell-autonomous”. Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its “dead” kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.  相似文献   

14.
In Parkinson’s disease, aggregates of α-synuclein within Lewy bodies and Lewy neurites represent neuropathological hallmarks. However, the cellular and molecular mechanisms triggering oligomeric and fibrillary α-synuclein aggregation are not fully understood. Recent evidence indicates that oxidative stress induced by metal ions and post-translational modifications such as phosphorylation, ubiquitination, nitration, glycation, and SUMOylation affect α-synuclein conformation along with its aggregation propensity and neurotoxic profiles. In addition, proteolytic cleavage of α-synuclein by specific proteases results in the formation of a broad spectrum of fragments with consecutively altered and not fully understood physiological and/or pathological properties. In the present review, we summarize the current knowledge on proteolytical α-synuclein cleavage by neurosin, calpain-1, cathepsin D, and matrix metalloproteinase-3 in health and disease. We also shed light on the contribution of the same enzymes to proteolytical processing of pathogenic proteins in Alzheimer’s disease and report potential cross-disease mechanisms of pathogenic protein aggregation.  相似文献   

15.
Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson’s disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3β (GSK3β) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3β activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson’s disease and other neurodegenerative disorders.  相似文献   

16.
Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson’s disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.  相似文献   

17.
One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3β. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3β (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/β phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/β reduced thrombin-mediated platelet aggregation, integrin αIIbβ3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3β phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3β resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/β KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3β KI. In conclusion, our data indicate that GSK3α and GSK3β have differential roles in regulating platelet function.  相似文献   

18.
Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson’s disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal–lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.  相似文献   

19.
The accumulation of aggregated α-synuclein (αSyn) is a hallmark of Parkinson’s disease (PD). Current evidence indicates that small soluble αSyn oligomers (αSynOs) are the most toxic species among the forms of αSyn aggregates, and that size and topological structural properties are crucial factors for αSynOs-mediated toxicity, involving the interaction with either neurons or glial cells. We previously characterized a human αSynO (H-αSynO) with specific structural properties promoting toxicity against neuronal membranes. Here, we tested the neurotoxic potential of these H-αSynOs in vivo, in relation to the neuropathological and symptomatic features of PD. The H-αSynOs were unilaterally infused into the rat substantia nigra pars compacta (SNpc). Phosphorylated αSyn (p129-αSyn), reactive microglia, and cytokine levels were measured at progressive time points. Additionally, a phagocytosis assay in vitro was performed after microglia pre-exposure to αsynOs. Dopaminergic loss, motor, and cognitive performances were assessed. H-αSynOs triggered p129-αSyn deposition in SNpc neurons and microglia and spread to the striatum. Early and persistent neuroinflammatory responses were induced in the SNpc. In vitro, H-αSynOs inhibited the phagocytic function of microglia. H-αsynOs-infused rats displayed early mitochondrial loss and abnormalities in SNpc neurons, followed by a gradual nigrostriatal dopaminergic loss, associated with motor and cognitive impairment. The intracerebral inoculation of structurally characterized H-αSynOs provides a model of progressive PD neuropathology in rats, which will be helpful for testing neuroprotective therapies.  相似文献   

20.
Heme oxygenase-1 (HO-1) exerts beneficial effects, including angiogenesis and energy metabolism via the peroxisome proliferator-activating receptor-γ coactivator-1α (PGC-1α)–estrogen-related receptor α (ERRα) pathway in astrocytes. However, the role of Korean red ginseng extract (KRGE) in HO-1-mediated mitochondrial function in traumatic brain injury (TBI) is not well-elucidated. We found that HO-1 was upregulated in astrocytes located in peri-injured brain regions after a TBI, following exposure to KRGE. Experiments with pharmacological inhibitors and target-specific siRNAs revealed that HO-1 levels highly correlated with increased AMP-activated protein kinase α (AMPKα) activation, which led to the PGC-1α-ERRα axis-induced increases in mitochondrial functions (detected based on expression of cytochrome c oxidase subunit 2 (MTCO2) and cytochrome c as well as O2 consumption and ATP production). Knockdown of ERRα significantly reduced the p-AMPKα/AMPKα ratio and PGC-1α expression, leading to AMPKα–PGC-1α–ERRα circuit formation. Inactivation of HO by injecting the HO inhibitor Sn(IV) protoporphyrin IX dichloride diminished the expression of p-AMPKα, PGC-1α, ERRα, MTCO2, and cytochrome c in the KRGE-administered peri-injured region of a brain subjected to TBI. These data suggest that KRGE enhanced astrocytic mitochondrial function via a HO-1-mediated AMPKα–PGC-1α–ERRα circuit and consequent oxidative phosphorylation, O2 consumption, and ATP production. This circuit may play an important role in repairing neurovascular function after TBI in the peri-injured region by stimulating astrocytic mitochondrial biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号