首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Processes of charge carrier photogeneration and recombination are investigated in films of poly-N-epoxypropylcarbazole doped with polymethine dye. Films with blocking contacts were illuminated with light from either the region of dye absorption or beyond this region. The kinetics of accumulation and relaxation of electron–hole pairs with lifetimes greater than tens or hundreds of seconds was studied. It is presumed that the reason for the growth of recombination luminescence intensity in an external electric field is connected with the increase in efficiency of radiative recombination stimulated by electrons captured from photogenerated excitons. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
The methods of infrared absorption spectroscopy and Raman spectroscopy are used to study nanocrystalline SnO x films (1 ≤ x ≤ 2) prepared by thermal oxidation of metallic tin layers. A monotonic decrease in the transmittance of films in the infrared region has been observed as a result of exposure of the films to light with the wavelength of 380 nm at room temperature. The effect is at a maximum for the samples with x ≈ 2 and is observed for ∼10 min after switching off of illumination. The mentioned variations in optical properties, similarly to those observed in the case of heating of the samples in the dark, are accounted for by an increase in the concentration of free charge carriers (electrons) in nanocrystals of tin dioxide. The data of infrared spectroscopy and the Drude model are used to calculate the concentrations of photogenerated charge carriers (∼1019 cm−3); variations in these concentrations in the course of illumination and after switching off of illumination are determined. Mechanisms of observed photogeneration of charge carriers in SnO x films and possible applications of this effect to gas sensors are discussed.  相似文献   

3.
This study characterizes a hybrid structure formed between graphene and organic dye molecules for use in photodetectors with spectral color selectivity. Rhodamine‐based organic dye molecules with red, green, or blue light absorption profiles are deposited onto a graphene surface by dip‐coating. UV–vis absorption spectroscopy, charge transport measurements, and density functional theory based calculations reveal that the photoresponses of the dye graphene hybrid films are governed by the light absorption of the dye molecules and also by the photo‐excited‐charge‐transfer‐induced photocurrent gain. The hybrid films respond only to photons with an energy exceeding the band gap of the immobilized dye. Dye‐Graphene charge transfer is affected by the distance and direction of the dipole moment between the two layers. The resulting hybrid films exhibit spectral color selectivities with responsivities of ≈103 A W?1 and specific detectivities of ≈1010 Jones. This study demonstrates the successful operation of photodetectors with a full‐color optical bandwidth using hybrid graphene structures coated with a mixture of dyes. The strategy of building a simple hybrid photodetector can further offer many opportunities to be also tuned for other optical functionalities using a variety of commercially available dye molecules.  相似文献   

4.
Features of electrical conductivity and photoconductivity of polyvinylbutyral films containing porous silicon nanoparticles and similar films doped with cationic and anionic polymethine dyes are studied. Sensitization of the photoelectric effect by dyes with different ionicities in films is explained by the possible photogeneration of holes and electrons from dye molecules and the intrinsic bipolar conductivity of porous silicon nanoparticles. It is assumed that the electronic conductivity in porous silicon nanoparticles is higher in comparison with p-type conductivity.  相似文献   

5.
The charge carrier dynamics of epitaxial hematite films is studied by time‐resolved microwave (TRMC) and time‐resolved terahertz conductivity (TRTC). After excitation with above bandgap illumination, the TRTC signal decays within 3 ps, consistent with previous reports of charge carrier localization times in hematite. The TRMC measurements probe charge carrier dynamics at longer timescales, exhibiting biexponential decay with characteristic time constants of ≈20–50 ns and 1–2 μs. From the change in photoconductance, the effective carrier mobility is extracted, defined as the product of the charge carrier mobility and photogeneration yield, of differently doped (undoped, Ti, Sn, Zn) hematite films for excitation wavelengths of 355 and 532 nm. It is shown that, unlike in conventional semiconductors, donor doping of hematite dramatically increases the effective mobility of the photogenerated carriers. Furthermore, it is shown that all hematite films possess higher effective mobility for 355 nm excitation than for 532 nm excitation, although the time dependence of the photoconductance decay, or charge carrier lifetime, remains the same. These results provide an explanation for the wavelength dependent photoelectrochemical behavior of hematite photoelectrodes and suggest that an increase in photogeneration yield or charge carrier mobility is responsible for the improved performance at higher excitation energies.  相似文献   

6.
It is shown that the doping of colloidal indium-oxide nanocrystals with tin shifts the absorption edge to shorter wavelengths of the visible spectral region and induces considerable absorption in the infrared region. The shape of the absorption and transmittance spectra in the infrared region is characteristic of the local surface plasmon resonance. According to estimations, the concentration of free charge carriers in In2O3(Sn) reaches 1019 cm?3. The temperature dependences of the photoconductivity in the range 77–300 K are indicative of hopping conduction in nanostructured films based on In2O3(Sn) nanocrystals. The mechanisms responsible for the effect are discussed.  相似文献   

7.
An investigation of the function of an indolene‐based organic dye, termed D149, incorporated in to solid‐state dye‐sensitized solar cells using 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxypheny‐amine)‐9,9′‐spirobifluorene (spiro‐OMeTAD) as the hole transport material is reported. Solar cell performance characteristics are unprecedented under low light levels, with the solar cells delivering up to 70% incident photon‐to‐current efficiency (IPCE) and over 6% power conversion efficiency, as measured under simulated air mass (AM) 1.5 sun light at 1 and 10 mW cm?2. However, a considerable nonlinearity in the photocurrent as intensities approach “full sun” conditions is observed and the devices deliver up to 4.2% power conversion efficiency under simulated sun light of 100 mW cm?2. The influence of dye‐loading upon solar cell operation is investigated and the thin films are probed via photoinduced absorption (PIA) spectroscopy, time‐correlated single‐photon counting (TCSPC), and photoluminescence quantum efficiency (PLQE) measurements in order to deduce the cause for the non ideal solar cell performance. The data suggest that electron transfer from the photoexcited sensitizer into the TiO2 is only between 10 to 50% efficient and that ionization of the photo excited dye via hole transfer directly to spiro‐OMeTAD dominates the charge generation process. A persistent dye bleaching signal is also observed, and assigned to a remarkably high density of electrons “trapped” within the dye phase, equivalent to 1.8 × 1017 cm?3 under full sun illumination. it is believed that this localized space charge build‐up upon the sensitizer is responsible for the non‐linearity of photocurrent with intensity and nonoptimum solar cell performance under full sun conditions.  相似文献   

8.
Highly fluorescent excited‐state charge‐transfer complexes (exciplexes) formed at the interfacial region between a polymeric donor matrix, here, poly(N‐vinylcarbazole), and embedded nanostructured acceptors are characterized for their photophysical properties. Exciplex‐to‐exciton emission switching is observed after solvent vapor annealing (SVA) due to the size evolution of the nanostructures beyond the exciton diffusion length. Color‐tunable exiplex emission (sky blue, green, and orange) is demonstrated for three different nanostructured acceptors with the same HOMO–LUMO gap (i.e., the same blue excitonic emission) but with different electron affinity. White‐emitting poly(N‐vinylcarbazole) film is also fabricated, simply by incorporating mixed supramolecular acceptors, which provide independent exciplex emissions. This study presents important insights into the excited‐state intermolecular interaction at the well‐defined nanoscale interface and suggests an efficient way to obtain multicolored exciplex emissions.  相似文献   

9.
Dye‐sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole‐transporter materials. In order to further improve the efficiency of solid‐state dye‐sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3‐hexylthiophene) (P3HT), to replace the more commonly used “transparent” 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9′spiro‐bifluorene (spiro‐OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro‐OMeTAD based solid‐state DSSC, the P3HT‐based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li‐TFSI), although the precise role of these additives has not yet been clarified in solid‐state DSCs. Here, we present a thorough study on the effect of Li‐TFSI in P3HT based solid‐state DSSC incorporating an indolene‐based organic sensitizer termed D102. Employing ultrafast transient absorption and cw‐emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO2. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO2 conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system.  相似文献   

10.
The photoconductivity of films of amorphous molecular semiconductors increases upon simultaneous photogeneration of singlet electron–hole pairs (EHPs) and triplet excitons and decreases upon photogeneration of triplet EHPs and triplet excitons. An increase in external electric field strength leads to a decrease in the effect of triplet excitons on the film photoconductivity caused by EHP dissociation. It is concluded that under increasing external electric field strength the mobility of charge carriers increases and the velocity of EHP dissociation becomes comparable with the velocity of spin conversion of EHPs interacting with triplet excitons. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
A new type of organic light‐emitting diode (OLED) has emerged that shows enhanced operational stability and large internal quantum efficiency approaching 100%, which is based on thermally activated delayed fluorescence (TADF) compounds doped with fluorescent emitters. Magneto‐electroluminescence (MEL) in such TADF‐based OLEDs and magneto‐photoluminescence (MPL) in thin films based on donor–acceptor (D–A) exciplexes doped with fluorescent emitters with various concentrations are investigated. It has been found that both MEL and MPL responses are thermally activated with substantially lower activation energy compared to that in the pristine undoped D–A exciplex host blend. In addition, both MPL and MEL steeply decrease with the emitter's concentration. This indicates the existence of a loss mechanism, whereby the triplet charge‐transfer state in the exciplex host blend may directly decay to the lowest, nonemissive triplet state of the fluorescent emitter molecules.  相似文献   

12.
The charge photogeneration and recombination processes in organic photovoltaic solar cells based on blend of the low bandgap copolymer, PTB7 (fluorinated poly‐thienothiophene‐benzodithiophene) with C60‐PCBM using optical, electrical, and magnetic measurements in thin films and devices is studied. A variety of steady state optical and magneto‐optical techniques were employed, such as photoinduced absorption (PA), magneto‐PA, doping‐induced absorption, and PA‐detected magnetic resonance (PADMR); as well as picosecond time‐resolved PA. The charge polarons and triplet exciton dynamics in films of pristine PTB7, PTB7/fullerene donor–acceptor (D–A) blend is followed. It is found that a major loss mechanism that limits the power conversion efficiency (PCE) of PTB7‐based solar cell devices is the “back reaction” that leads to triplet exciton formation in the polymer donor from the photogenerated charge‐transfer excitons at the D–A interfaces. A method of suppressing this “back reaction” by adding spin½ radicals Galvinoxyl to the D–A blend is presented; this enhances the cell PCE by ≈30%. The same method is not effective for cells based on PTB7/C70‐PCBM blend, where high PCE is reached even without Galvinoxyl radical additives.  相似文献   

13.
Interface exciplex represents a promising host material for organic light-emitting diodes (OLEDs) with barrier-free charge injection and highly confined recombination region. However, the efficiency of radiative recombination in pristine exciplex is usually low and needs to be improved by doping various emitters. In this study, the interface exciplex OLEDs doped with fluorescence, phosphorescence, and thermally activated delayed fluorescence (TADF) emitters is fabricated to investigate the relationship between their excited-state properties and electroluminescence efficiencies. A maximum external quantum efficiency of 20% is achieved in interface exciplex OLEDs doped with TADF emitter, which corresponds to nearly 100% exciton utilization and is superior to those of fluorescence and phosphorescence emitters. Furthermore, optical spectroscopy and magneto-electroluminescence method are used to study the advantages of TADF emitter in interface exciplex host. The large dipole of TADF emitter is beneficial for harvesting energy from the charge-transfer state at the interface, and its reverse intersystem crossing avoids the accumulation of triplet excitons that leads to triplet-triplet annihilation in interface exciplex OLEDs. These results demonstrate that the photophysical process needs to be carefully considered in designing high-performance emitters for exciplex host materials, and it may bring in-depth understanding on improving exciton utilization and electroluminescence efficiency in interface exciplex OLEDs.  相似文献   

14.
Bimolecular and trap‐assisted recombination mechanisms are investigated in small molecule‐based phosphorescent organic light emitting diodes (PhOLEDs) using the current?voltage?luminance characteristics in the diffusion current region, along with transient electroluminescence and capacitance measurements. Two different PhOLEDs, one with a single host, 4,4′‐Bis(carbazol‐9‐yl)biphenyl, and the other with an exciplex‐forming co‐host, are studied. Trap‐assisted recombination with a large number of trapped charges is dominant in the PhOLED with the single host because of the large energy gap between the host and the dopant state. In contrast, bimolecular Langevin recombination is dominant in the PhOLED with the exciplex forming co‐host, where a phosphorescent dye is doped in the co‐host. As a result, the accumulated charge density is lower in the co‐host system than in the single host emission layer, leading to high efficiency that approaches the theoretical limit, with an extremely low efficiency roll‐off.  相似文献   

15.
Models of photogeneration of charge carriers and structural regularities of the photoeffect are analyzed for homologous series of the main classes of photosensitive polymer semiconductors and their donor-acceptor complexes with different sensitizers. The relationship between the chemical structure of polymers and their photophysical properties is studied on the basis of an analysis of the effect of the energy and spatial structure of the monomeric unit of a polymer and the complex molecules on the spectra of the quantum yield of carrier photogeneration. The existence of general regularities of changes in the quantum yield with changes in the parameters of the molecular structure is ascertained for the main classes of polymer semiconductors and donor-acceptor complexes. Comparison of the experimental results with the calculations on the basis of the structure-sensitive model of Onsager photogeneration made it possible to estimate the initial distances and the degree of charge transfer in the excited state of complex molecules and relate the obtained values of the dipole moments to the hyperpolarizability in nonlinear optical media formed on the basis of these polymers and complexes. The ascertained structural regularities of the photophysical processes make it possible to predict the ultimate quantum yield of photoprocesses in polymer organic semiconductors and their molecular complexes, as well as the ultimate value of photosensitivity of recording media on their basis.  相似文献   

16.
The effect of PtOEP as a dopant on the performance of MEH-PPV/C60 photovoltaic devices was studied. Bilayer heterojunction devices with various compositions and layer structures were used to determine the possible pathways by which the photogeneration efficiency is enhanced. A key finding is that photocurrent generation enhancement always occurs in the MEH-PPV absorption region, regardless of the PtOEP dopant concentration or the MEH-PPV layer thickness. This result suggests that the presence of PtOEP in the donor MEH-PPV layer is primarily responsible for increasing the triplet exciton diffusion length of MEH-PPV by acting as a triplet sensitizer, rather than as an additional absorber for direct photogeneration. Values obtained from simulation show that the enhancement of exciton diffusion length of MEH-PPV can be more than a factor of 2 with optimal PtOEP concentrations. Further support for the role of PtOEP as a triplet sensitizer in MEH-PPV was obtained in experiments incorporating a blocking layer between MEH-PPV and C60, whereby the various exciton transfer processes can be differentiated.  相似文献   

17.
The photophysical properties of poly-2,2′-(1-dodecyl carbazole-4,7-yl)-6,6′-(oxy)-bis-(4-phenylquinoline) in a solution, as a film, and in a poly(methyl methacrylate) or poly-N-vinylcarbazole host matrix have been studied. Considerable positive solvatochromism in the photoluminescence spectra, compared with solvatochromism in the absorption spectra, indicates that the dipole moment of the donor-acceptor complex increases in the excited state. Calculations show that the dipole moments of the complex in the ground and excited states differ by more than an order of magnitude. Upon transition to films, photoluminescence is observed in the entire visible spectral range (white luminescence). The intensity of the white luminescence grows by an order of magnitude when the polymer is dispersed in a poly(methyl methacrylate) matrix. The integrated photosensitivity and parameters of the photogeneration process (quantum yield of carrier photogeneration, quantum yield of free carrier formation, and thermalization radii) have been determined.  相似文献   

18.
In organic solar cells, photogenerated singlet excitons form charge transfer (CT) complexes, which subsequently split into free charge carriers. Here, the contributions of excess energy and molecular quadrupole moments to the charge separation process are considered. The charge photogeneration in two separate bulk heterojunction systems consisting of the polymer donor PTB7-Th and two non-fullerene acceptors, ITIC and h-ITIC, is investigated. CT state dissociation in these donor–acceptor systems is monitored by charge density decay dynamics obtained from transient absorption experiments. The electric field dependence of charge carrier generation is studied at different excitation energies by time delayed collection field (TDCF) and sensitive steady-state photocurrent measurements. Upon excitation below the optical gap, free charge carrier generation becomes less field dependent with increasing photon energy, which challenges the view of charge photogeneration proceeding through energetically lowest CT states. The average distance between electron–hole pairs at the donor–acceptor interface is determined from empirical fits to the TDCF data. The delocalization of CT states is larger in PTB7-Th:ITIC, the system with larger molecular quadrupole moment, indicating the sizeable effect of the electrostatic potential at the donor–acceptor interface on the dissociation of CT complexes.  相似文献   

19.
A general method is proposed to produce oriented and highly crystalline conducting polymer layers. It combines the controlled orientation/crystallization of polymer films by high‐temperature rubbing with a soft‐doping method based on spin‐coating a solution of dopants in an orthogonal solvent. Doping rubbed films of regioregular poly(3‐alkylthiophene)s and poly(2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[3,2‐b ]thiophene) with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) yields highly oriented conducting polymer films that display polarized UV–visible–near‐infrared (NIR) absorption, anisotropy in charge transport, and thermoelectric properties. Transmission electron microscopy and polarized UV–vis–NIR spectroscopy help understand and clarify the structure of the films and the doping mechanism. F4TCNQ? anions are incorporated into the layers of side chains and orient with their long molecular axis perpendicular to the polymer chains. The ordering of dopant molecules depends closely on the length and packing of the alkyl side chains. Increasing the dopant concentration results in a continuous variation of unit cell parameters of the doped phase. The high orientation results in anisotropic charge conductivity (σ) and thermoelectric properties that are both enhanced in the direction of the polymer chains (σ = 22 ± 5 S cm?1 and S = 60 ± 2 µV K?1). The method of fabrication of such highly oriented conducting polymer films is versatile and is applicable to a large palette of semiconducting polymers.  相似文献   

20.
The nature of charge carriers in recently developed high mobility semiconducting donor‐acceptor polymers is debated. Here, localization due to charge relaxation is investigated in a prototypal system, a good electron transporting naphthalenediimide based copolymer, by means of current‐voltage IV electrical characteristics and charge modulation spectroscopy (CMS) in top‐gate field‐effect transistors (FETs), combined with density functional theory (DFT) and time dependent DFT (TDDFT) calculations. In particular, pristine copolymer films are compared with films that underwent a melt‐annealing process, the latter leading to a drastic change of the microstructure. Despite the packing modification, which involves also the channel region, both the electron mobility and the energy of polaronic transitions are substantially unchanged upon melt‐annealing. The polaron absorption features can be rationalized and reproduced by TDDFT calculations for isolated charged oligomers. Therefore, it is concluded that in such a high electron mobility copolymer the charge transport process involves polaronic species which are intramolecular in nature and, from a more general point of view, that interchain delocalization of the polaron is not necessary to sustain charge mobilities in the 0.1 to 1 cm2 V 1 s–1 range. These findings contribute to the rationalization of the charge transport process in the recently developed class of donor‐acceptor π‐conjugated copolymers featuring high charge mobilities and complex morphologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号