首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.  相似文献   

2.
Drosophila melanogaster (Drosophila) models of cancer are emerging as powerful tools to investigate the basic mechanisms underlying tumour progression and identify novel therapeutics. Rapid and inexpensive, it is possible to carry out genetic and drug screens at a far larger scale than in vertebrate organisms. Such whole-organism-based drug screens permits assessment of drug absorption and toxicity, reducing the possibility of false positives. Activating mutations in the Wnt and Ras signalling pathways are common in many epithelial cancers, and when driven in the adult Drosophila midgut, it induces aggressive intestinal tumour-like outgrowths that recapitulate many aspects of human colorectal cancer (CRC). Here we have taken a Drosophila CRC model in which tumourous cells are marked with both GFP and luciferase reporter genes, and developed novel high-throughput assays for quantifying tumour burden. Leveraging these assays, we find that the Drosophila CRC model responds rapidly to treatment with standard CRC-drugs, opening the door to future rapid genetic and drug screens.  相似文献   

3.
African swine fever virus (ASFV) is a highly contagious virus that causes severe hemorrhagic viral disease resulting in high mortality in domestic and wild pigs, until few antiviral agents can inhibit ASFV infections. Thus, new anti-ASFV drugs need to be urgently identified. Recently, we identified pentagastrin as a potential antiviral drug against ASFVs using molecular docking and machine learning models. However, the scoring functions are easily influenced by properties of protein pockets, resulting in a scoring bias. Here, we employed the 5′-P binding pocket of AsfvPolX as a potential binding site to identify antiviral drugs and classified 13 AsfvPolX structures into three classes based on pocket parameters calculated by the SiteMap module. We then applied principal component analysis to eliminate this scoring bias, which was effective in making the SP Glide score more balanced between 13 AsfvPolX structures in the dataset. As a result, we identified cangrelor and fostamatinib as potential antiviral drugs against ASFVs. Furthermore, the classification of the pocket properties of AsfvPolX protein can provide an alternative approach to identify novel antiviral drugs by optimizing the scoring function of the docking programs. Here, we report a machine learning-based novel approach to generate high binding affinity compounds that are individually matched to the available classification of the pocket properties of AsfvPolX protein.  相似文献   

4.
5.
6.
The yellow fever virus (YFV) is an emerging RNA virus and has caused large outbreaks in Africa and Central and South America. The virus is often transmitted through infected mosquitoes and spreads from area to area because of international travel. Being an acute viral hemorrhagic disease, yellow fever can be prevented by an effective, safe, and reliable vaccine, but not be eliminated. Currently, there is no antiviral drug available for its cure. Thus, two series of novel bis(benzofuran–1,3-imidazolidin-4-one)s and bis(benzofuran–1,3-benzimidazole)s were designed and synthesized for the development of anti-YFV lead candidates. Among 23 new bis-conjugated compounds, 4 of them inhibited YFV strain 17D (Stamaril) on Huh-7 cells in the cytopathic effect reduction assays. These conjugates exhibited the most compelling efficacy and selectivity with an EC50 of <3.54 μM and SI of >15.3. The results are valuable for the development of novel antiviral drug leads against emerging diseases.  相似文献   

7.
In academia, compound recycling represents an alternative drug discovery strategy to identify new pharmaceutical targets from a library of chemical compounds available in house. Herein we report the application of a rational target‐based drug‐repurposing approach to find diverse applications for our in‐house collection of compounds. The carbonic anhydrase (CA, EC 4.2.1.1) metalloenzyme superfamily was identified as a potential target of our compounds. The combination of a thoroughly validated docking screening protocol, together with in vitro assays against various CA families and isoforms, allowed us to identify two unprecedented chemotypes as CA inhibitors. The identified compounds have the capacity to preferentially bind pathogenic (bacterial/protozoan) CAs over human isoforms and represent excellent hits for further optimization in hit‐to‐lead campaigns.  相似文献   

8.
As the Zika virus protease is an essential and well-established target for the development of antiviral agents, we biochemically screened for inhibitors using a purified recombinantly expressed form of this enzyme. As a result, we were able to identify 10 new Zika virus protease inhibitors. These compounds are natural products and showed strong inhibition in the biochemical assays. Inhibitory constants values for the compounds ranged from 5 nM to 8 μM. Among the most potent inhibitors are flavonoids like irigenol hexa-acetate (Ki=0.28 μM), katacine (Ki=0.26 μM), theaflavin gallate (Ki=0.40 μM) and hematein (Ki=0.33 μM). Inhibitors from other groups of natural products include sennoside A (Ki=0.19 μM) and gossypol (Ki=0.70 μM). Several of the obtained compounds are known for their beneficial health effects and have acceptable pharmacokinetic characteristics. Thus, they could be of interest as lead compounds for the development of important and essential Zika antiviral drugs.  相似文献   

9.
The organic cation transporters OCT1-3 (SLC22A1-3) facilitate the transport of cationic endo- and xenobiotics and are important mediators of drug distribution and elimination. Their polyspecific nature makes OCTs highly susceptible to drug–drug interactions (DDIs). Currently, screening of OCT inhibitors depends on uptake assays that require labeled substrates to detect transport activity. However, these uptake assays have several limitations. Hence, there is a need to develop novel assays to study OCT activity in a physiological relevant environment without the need to label the substrate. Here, a label-free impedance-based transport assay is established that detects OCT-mediated transport activity and inhibition utilizing the neurotoxin MPP+. Uptake of MPP+ by OCTs induced concentration-dependent changes in cellular impedance that were inhibited by decynium-22, corticosterone, and Tyrosine Kinase inhibitors. OCT-mediated MPP+ transport activity and inhibition were quantified on both OCT1-3 overexpressing cells and HeLa cells endogenously expressing OCT3. Moreover, the method presented here is a valuable tool to identify novel inhibitors and potential DDI partners for MPP+ transporting solute carrier proteins (SLCs) in general.  相似文献   

10.
Given the eminent threat of a 21st century flu pandemic, the search for novel antiviral compounds is an increasingly important area of research. Recent developments in antiviral research have established the viability of targeting viral neuraminidase (NA), an enzyme that cleaves sialic acid from the cell-surface-mediating passage of the virus in the respiratory tract. N-acetyl neuraminic acid (NeuAc) is the substrate for NA, and analogues of this core structure have been commercialized as antiviral therapeutics. Recent studies have established that this system is well suited for combinatorial approaches to drug discovery. An important step in the process is to develop solid-phase screening technologies. The feasibility of performing competitive solid-phase NA assays is reported herein. Initially, a fluorogenic NeuAc substrate was immobilized on solid support, and the ability of three NAs (Clostridium perfringens, Salmonella typhimurium, and Vibrio cholerae) to cleave the substrate was shown to be analogous to solution-phase assays. The solid support was then bifunctionalized with the fluorogenic NeuAc substrate and one of two known inhibitors (DANA and Zanamivir). The ability of NA to cleave NeuAc from the solid support when simultaneously presented with an inhibitor was shown to be enzyme dependent. As expected, simultaneous presentation of NeuAc and DANA, a nonspecific inhibitor, led to diminished activity for all three enzymes tested. In contrast, dual presentation of NeuAc and the selective inhibitor Zanamivir only showed significant activity against Vibrio cholerae.  相似文献   

11.
Herpesviruses are highly prevalent in the human population, and frequent reactivations occur throughout life. Despite antiviral drugs against herpetic infections, the increasing appearance of drug-resistant viral strains and their adverse effects prompt the research of novel antiherpetic drugs for treating lesions. Peptides obtained from natural sources have recently become of particular interest for antiviral therapy applications. In this work, we investigated the antiviral activity of the peptide A-3302-B, isolated from a marine bacterium, Micromonospora sp., strain MAG 9-7, against herpes simplex virus type 1, type 2, and human cytomegalovirus. Results showed that the peptide exerted a specific inhibitory activity against HSV-2 with an EC50 value of 14 μM. Specific antiviral assays were performed to investigate the mechanism of action of A-3302-B. We demonstrated that the peptide did not affect the expression of viral proteins, but it inhibited the late events of the HSV-2 replicative cycle. In detail, it reduced the cell-to-cell virus spread and the transmission of the extracellular free virus by preventing the egress of HSV-2 progeny from the infected cells. The dual antiviral and previously reported anti-inflammatory activities of A-3302-B, and its effect against an acyclovir-resistant HSV-2 strain are attractive features for developing a therapeutic to reduce the transmission of HSV-2 infections.  相似文献   

12.
Bombyx mori nucleopolyhedrovirus (BmNPV) causes major economic losses in sericulture. A number of agents have been employed to treat viral diseases. Silver nanoparticles (AgNPs) have wide applications in biomedical fields due to their unique properties. The anti-BmNPV effect of AgNPs has been evaluated, however, there are insufficient studies concerning its toxicity to other organisms and the environment. We chemically synthesized biocompatible BSA-AgNPs with a diameter range of 2–4 nm and characterized their physical properties. The toxicity of AgNPs towards cells and larvae with different concentrations was examined; the results indicated a biofriendly effect on cells and larvae within specific concentration ranges. The SEM observation of the surface of BmNPV after treatment with AgNPs suggested that AgNPs could destroy the polyhedral structure, and the same result was obtained by Coomassie blue staining. Further assays confirmed the weakened virulence of AgNPs-treated BmNPV toward cells and larvae. AgNPs also could effectively inhibit the replication of BmNPV in infected cells and larvae. In summary, our research provides valuable data for the further development of AgNPs as an antiviral drug for sericulture.  相似文献   

13.
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.  相似文献   

14.
Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.  相似文献   

15.
Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.  相似文献   

16.
Acquired drug resistance decreases the efficacy of gefitinib after approximately 1 year of treatment in non-small-cell lung cancer (NSCLC). Autophagy is a process that could lead to cell death when it is prolonged. Thus, we investigated a drug combination therapy of gefitinib with rapamycin—a cell autophagy activator—in gefitinib-resistant NSCLC cell line H1975 to improve the therapeutic efficacy of gefitinib in advanced NSCLC cells through acute cell autophagy induction. Cell viability and tumor formation assays indicated that rapamycin is strongly synergistic with gefitinib inhibition, both in vitro and in vivo. Mechanistic studies demonstrated that EGFR expression and cell autophagy decreased under gefitinib treatment and were restored after the drug combination therapy, indicating a potential cell autophagy–EGFR positive feedback regulation. To further optimize the delivery efficiency of the combinational agents, we constructed an anti-EGFR aptamer-functionalized nanoparticle (NP-Apt) carrier system. The microscopic observation and cell proliferation assays suggested that NP-Apt achieved remarkably targeted delivery and cytotoxicity in the cancer cells. Taken together, our results suggest that combining rapamycin and gefitinib can be an efficacious therapy to overcome gefitinib resistance in NSCLC, and targeted delivery of the drugs using the aptamer-nanoparticle carrier system further enhances the therapeutic efficacy of gefitinib.  相似文献   

17.
Since the onset of antiviral therapy, viral resistance has compromised the clinical value of small-molecule drugs targeting pathogen components. As intracellular parasites, viruses complete their life cycle by hijacking a multitude of host-factors. Aiming at the latter rather than the pathogen directly, host-directed antiviral therapy has emerged as a concept to counteract evolution of viral resistance and develop broad-spectrum drug classes. This approach is propelled by bioinformatics analysis of genome-wide screens that greatly enhance insights into the complex network of host-pathogen interactions and generate a shortlist of potential gene targets from a multitude of candidates, thus setting the stage for a new era of rational identification of drug targets for host-directed antiviral therapies. With particular emphasis on human immunodeficiency virus and influenza virus, two major human pathogens, we review screens employed to elucidate host-pathogen interactions and discuss the state of database ontology approaches applicable to defining a therapeutic endpoint. The value of this strategy for drug discovery is evaluated, and perspectives for bioinformatics-driven hit identification are outlined.  相似文献   

18.
Even in the face of global vaccination campaigns, there is still an urgent need for effective antivirals against SARS-CoV-2 and its rapidly spreading variants. Several natural compounds show potential as antiviral substances and have the advantages of broad availabilities and large therapeutic windows. Here, we report that lectin from Triticum vulgaris (Wheat Germ Agglutinin) displays antiviral activity against SARS-CoV-2 and its major Variants of Concern (VoC), Alpha and Beta. In Vero B4 cells, WGA potently inhibits SARS-CoV-2 infection with an IC50 of <10 ng/mL. WGA is effective upon preincubation with the virus or when added during infection. Pull-down assays demonstrate direct binding of WGA to SARS-CoV-2, further strengthening the hypothesis that inhibition of viral entry by neutralizing free virions might be the mode of action behind its antiviral effect. Furthermore, WGA exhibits antiviral activity against human coronavirus OC43, but not against other non-coronaviruses causing respiratory tract infections. Finally, WGA inhibits infection of the lung cell line Calu-3 with wild type and VoC viruses with comparable IC50 values. Altogether, our data indicate that topical administration of WGA might be effective for prophylaxis or treatment of SARS-CoV-2 infections.  相似文献   

19.
Coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, has become a worldwide pandemic. Symptoms range from mild fever to cough, fatigue, severe pneumonia, acute respiratory distress syndrome (ARDS), and organ failure, with a mortality rate of 2.2%. However, there are no licensed drugs or definitive treatment strategies for patients with severe COVID-19. Only antiviral or anti-inflammatory drugs are used as symptomatic treatments based on clinician experience. Basic medical researchers are also trying to develop COVID-19 therapeutics. However, there is limited systematic information about the pathogenesis of COVID-19 symptoms that cause tissue damage or death and the mechanisms by which the virus infects and replicates in cells. Here, we introduce recent knowledge of time course changes in viral titers, delayed virus clearance, and persistent systemic inflammation in patients with severe COVID-19. Based on the concept of drug reposition, we review which antiviral or anti-inflammatory drugs can effectively treat COVID-19 patients based on progressive symptoms and the mechanisms inhibiting virus infection and replication.  相似文献   

20.
The human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) protein, essential for in vivo viral replication, protects the virus from innate antiviral cellular factor apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (APOBEC3G; A3G) and is an attractive target for the development of novel antiviral therapeutics. We have evaluated the structure-activity relationships of N-(2-methoxyphenyl)-2-((4-nitrophenyl)thio)benzamide (RN-18), a small molecule recently identified as an inhibitor of Vif function that blocks viral replication only in nonpermissive cells expressing A3G, by inhibiting Vif-A3G interactions. Microwave-assisted cross-coupling reactions were developed to prepare a series of RN18 analogues with diverse linkages and substitutions on the phenyl rings. A dual cell-based assay system was used to assess antiviral activity against wild-type HIV-1 in both nonpermissive (H9) and permissive (MT4) cells that also allowed evaluation of specificity. In general, variations of phenyl substitutions were detrimental to antiviral potency and specificity, but isosteric replacements of amide and ether linkages were relatively well tolerated. These structure-activity relationship data define structural requirements for Vif-specific activity, identify new compounds with improved antiviral potency and specificity, and provide leads for further exploration to develop new antiviral therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号