首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The observation of the immunomodulatory effects of opioid drugs opened the discussion about possible mechanisms of action and led researchers to consider the presence of opioid receptors (OR) in cells of the immune system. To date, numerous studies analyzing the expression of OR subtypes in animal and human immune cells have been performed. Some of them confirmed the expression of OR at both the mRNA and protein level, while others did not detect the receptor mRNA either. Although this topic remains controversial, further studies are constantly being published. The most recent articles suggested that the expression level of OR in human peripheral blood lymphocytes could help to evaluate the success of methadone maintenance therapy in former opioid addicts, or could serve as a biomarker for chronic pain diagnosis. However, the applicability of these findings to clinical practice needs to be verified by further investigations.  相似文献   

2.
Chronic pain is debilitating and represents a significant burden in terms of personal and socio-economic costs. Although opioid analgesics are widely used in chronic pain treatment, many patients report inadequate pain relief or relevant adverse effects, highlighting the need to develop analgesics with improved efficacy/safety. Multiple evidence suggests that G protein-dependent signaling triggers opioid-induced antinociception, whereas arrestin-mediated pathways are credited with modulating different opioid adverse effects, thus spurring extensive research for G protein-biased opioid agonists as analgesic candidates with improved pharmacology. Despite the increasing expectations of functional selectivity, translating G protein-biased opioid agonists into improved therapeutics is far from being fully achieved, due to the complex, multidimensional pharmacology of opioid receptors. The multifaceted network of signaling events and molecular processes underlying therapeutic and adverse effects induced by opioids is more complex than the mere dichotomy between G protein and arrestin and requires more comprehensive, integrated, network-centric approaches to be fully dissected. Quantitative Systems Pharmacology (QSP) models employing multidimensional assays associated with computational tools able to analyze large datasets may provide an intriguing approach to go beyond the greater complexity of opioid receptor pharmacology and the current limitations entailing the development of biased opioid agonists as improved analgesics.  相似文献   

3.
Transient receptor potential ankyrin member 1 (TRPA1) belongs to the family of thermo TRP cation channels that detect harmful temperatures, acids and numerous chemical pollutants. TRPA1 is expressed in nervous tissue, where it participates in the genesis of nociceptive signals in response to noxious stimuli and mediates mechanical hyperalgesia and allodynia associated with different neuropathies. The glutamate N-methyl-d-aspartate receptor (NMDAR), which plays a relevant role in allodynia to mechanical stimuli, is connected via histidine triad nucleotide-binding protein 1 (HINT1) and type 1 sigma receptor (σ1R) to mu-opioid receptors (MORs), which mediate the most potent pain relief. Notably, neuropathic pain causes a reduction in MOR antinociceptive efficacy, which can be reversed by blocking spinal NMDARs and TRPA1 channels. Thus, we studied whether TRPA1 channels form complexes with MORs and NMDARs that may be implicated in the aforementioned nociceptive signals. Our data suggest that TRPA1 channels functionally associate with MORs, delta opioid receptors and NMDARs in the dorsal root ganglia, the spinal cord and brain areas. These associations were altered in response to pharmacological interventions and the induction of inflammatory and also neuropathic pain. The MOR-TRPA1 and NMDAR-TRPA1 associations do not require HINT1 or σ1R but appear to be mediated by calcium-activated calmodulin. Thus, TRPA1 channels may associate with NMDARs to promote ascending acute and chronic pain signals and to control MOR antinociception.  相似文献   

4.
Opioids are the drugs of choice in severe pain management. Unfortunately, their use involves serious, potentially lethal side effects. Therefore, efforts in opioid drug design turn toward safer and more effective mechanisms, including allosteric modulation. In this study, molecular dynamics simulations in silico and ‘writhing’ tests in vivo were used to characterize potential allosteric mechanism of two previously reported compounds. The results suggest that investigated compounds bind to μ opioid receptor in an allosteric site, augmenting action of morphine at subeffective doses, and exerting antinociceptive effect alone at higher doses. Detailed analysis of in silico calculations suggests that first of the compounds behaves more like allosteric agonist, while the second compound acts mainly as a positive allosteric modulator.  相似文献   

5.
Opioid receptors, like many G protein-coupled receptors (GPCRs), are notoriously unstable in detergents. We have now developed a more stable variant of the mu-opioid receptor (MOR) and also a method for the immobilization of solubilized, functional opioid receptors on a solid phase (magnetic beads). Starting with the intrinsically more stable kappa-opioid receptor (KOR), we optimized the conditions (i.e. detergents and stabilizing ligands) for receptor extraction from lipid bilayers of HEK293T cells to obtain maximal amounts of functional, immobilized receptor. After immobilization, the ligand binding profile remains the same as observed for the membrane-embedded receptor. For the immobilized wild-type mu-opioid receptor, however, no conditions were found under which ligand binding capacity was retained. To solve this problem, we engineered the receptor chimera KKM where the N-terminus and the first transmembrane helix (TM1) of wild-type MOR is exchanged for the homologous receptor parts of the wild-type KOR. This hybrid receptor behaves exactly as the wild-type MOR in functional assays. Interestingly, the modified MOR is expressed at six times higher levels than wild-type MOR and is similarly stable as wild-type KOR after immobilization. Hence the immobilized MOR, represented by the chimera KKM, is now also amenable for biophysical characterization. These results are encouraging for future stability engineering of GPCRs.  相似文献   

6.
Opioids are considered the oldest drugs known by humans and have been used for sedation and pain relief for several centuries. Nowadays, endogenous opioid peptides are divided into four families: enkephalins, dynorphins, endorphins, and nociceptin/orphanin FQ. They exert their action through the opioid receptors (ORs), transmembrane proteins belonging to the super-family of G-protein-coupled receptors, and are expressed throughout the body; the receptors are the δ opioid receptor (DOR), μ opioid receptor (MOR), κ opioid receptor (KOR), and nociceptin/orphanin FQ receptor (NOP). Endogenous opioids are mainly studied in the central nervous system (CNS), but their role has been investigated in other organs, both in physiological and in pathological conditions. Here, we revise their role in stem cell (SC) biology, since these cells are a subject of great scientific interest due to their peculiar features and their involvement in cell-based therapies in regenerative medicine. In particular, we focus on endogenous opioids’ ability to modulate SC proliferation, stress response (to oxidative stress, starvation, or damage following ischemia–reperfusion), and differentiation towards different lineages, such as neurogenesis, vasculogenesis, and cardiogenesis.  相似文献   

7.
There exist three main types of endogenous opioid peptides, enkephalins, dynorphins and β-endorphin, all of which are derived from their precursors. These endogenous opioid peptides act through opioid receptors, including mu opioid receptor (MOR), delta opioid receptor (DOR) and kappa opioid receptor (KOR), and play important roles not only in analgesia, but also many other biological processes such as reward, stress response, feeding and emotion. The MOR gene, OPRM1, undergoes extensive alternative pre-mRNA splicing, generating multiple splice variants or isoforms. One type of these splice variants, the full-length 7 transmembrane (TM) Carboxyl (C)-terminal variants, has the same receptor structures but contains different intracellular C-terminal tails. The pharmacological functions of several endogenous opioid peptides through the mouse, rat and human OPRM1 7TM C-terminal variants have been considerably investigated together with various mu opioid ligands. The current review focuses on the studies of these endogenous opioid peptides and summarizes the results from early pharmacological studies, including receptor binding affinity and G protein activation, and recent studies of β-arrestin2 recruitment and biased signaling, aiming to provide new insights into the mechanisms and functions of endogenous opioid peptides, which are mediated through the OPRM1 7TM C-terminal splice variants.  相似文献   

8.
Refined 3D models of the transmembrane domains of the cloned, µ and opioid receptors belonging to the superfamilyof G-protein coupled receptors (GPCRs) were constructed froma multiple sequence alignment using the alpha carbon templateof rhodopsin recently reported. Other key steps in the procedurewere relaxation of the 3D helix bundle by unconstrained energyoptimization and assessment of the stability of the structureby performing unconstrained molecular dynamics simulations ofthe energy optimized structure. The results were stable ligand-freemodels of the TM domains of the three opioid receptors. Theligand-free receptor was then used to develop a systematicand reliable procedure to identify and assess putative bindingsites that would be suitable for similar investigation of theother two receptors and GPCRs in general. To this end, a non-selective,`universal' antagonist, naltrexone, and agonist, etorphine,were used as probes. These ligands were first docked in allsites of the model opioid receptor which were sterically accessibleand to which the protonated amine of the ligands could be anchoredto a complementary proton-accepting residue. Using these criteria,nine ligand–receptor complexes with different bindingpockets were identified and refined by energy minimization.The properties of all these possible ligand–substratecomplexes were then examined for consistency with known experimentalresults of mutations in both opioid and other GPCRs. Using thisprocedure, the lowest energy agonist–receptor and antagonist–receptorcomplexes consistent with these experimental results were identified.These complexes were then used to probe the mechanism of receptoractivation by identifying differences in receptor conformationbetween the agonist and the antagonist complex during unconstraineddynamics simulation. The results lent support to a possibleactivation mechanism of the mouse opioid receptor similar tothat recently proposed for several other GPCRs. They also allowedthe selection of candidate sites for future mutagenesis experiments.  相似文献   

9.
The design and development of analgesics with mixed-opioid receptor interactions has been reported to decrease side effects, minimizing respiratory depression and reinforcing properties to generate safer analgesic therapeutics. We synthesized bis-cyclic guanidine heterocyclic peptidomimetics from reduced tripeptides. In vitro screening with radioligand competition binding assays demonstrated variable affinity for the mu-opioid receptor (MOR), delta-opioid receptor (DOR), and kappa-opioid receptor (KOR) across the series, with compound 1968-22 displaying good affinity for all three receptors. Central intracerebroventricular (i.c.v.) administration of 1968-22 produced dose-dependent, opioid receptor-mediated antinociception in the mouse 55 °C warm-water tail-withdrawal assay, and 1968-22 also produced significant antinociception up to 80 min after oral administration (10 mg/kg, p.o.). Compound 1968-22 was detected in the brain 5 min after intravenous administration and was shown to be stable in the blood for at least 30 min. Central administration of 1968-22 did not produce significant respiratory depression, locomotor effects or conditioned place preference or aversion. The data suggest these bis-cyclic guanidine heterocyclic peptidomimetics with multifunctional opioid receptor activity may hold potential as new analgesics with fewer liabilities of use.  相似文献   

10.
Peptide-based agonists of the μ opioid receptor (μOR) are promising therapeutic candidates for pain relief with reduced side effects compared to morphine. A deep understanding of μOR–ligand interactions is necessary for future design of peptide-based opioid analgesics. To explore the requirements of the μOR binding pocket, eight new analogues of our cyclic peptide Tyr-c[d -Lys−Phe−Phe−Asp]NH2 displaying high μOR affinity were synthesized, in which Phe in either the third or fourth position was replaced by various derivatives of this amino acid (β3-Phe, homoPhe, β3-homoPhe and PhGly). The aim of this research was to examine the structural effects of such modifications on the bioactivity, and both experimental and theoretical methods were used. The binding of the cyclic analogues to all three OR types (μ, δ, κ) was assessed by radioligand competitive binding assay, and their functional activity was determined in a calcium mobilization assay. In order to provide structural hypotheses explaining the obtained experimental affinities, the complexes of the cyclic peptides with μOR were subjected to molecular modeling.  相似文献   

11.
Based on the mechanism of neuropathic pain induction, a new type of bifunctional hybrid peptidomimetics was obtained for potential use in this type of pain. Hybrids consist of two types of pharmacophores that are connected by different types of linkers. The first pharmacophore is an opioid agonist, and the second pharmacophore is an antagonist of the pronociceptive system, i.e., an antagonist of the melanocortin-4 receptor. The results of tests in acute and neuropathic pain models of the obtained compounds have shown that the type of linker used to connect pharmacophores had an effect on antinociceptive activity. Peptidomimetics containing longer flexible linkers were very effective at low doses in the neuropathic pain model. To elucidate the effect of linker lengths, two hybrids showing very high activity and two hybrids with lower activity were further tested for affinity for opioid (mu, delta) and melanocortin-4 receptors. Their complexes with the target receptors were also studied by molecular modelling. Our results do not show a simple relationship between linker length and affinity for particular receptor types but suggest that activity in neuropathic pain is related to a proper balance of receptor affinity rather than maximum binding to any or all of the target receptors.  相似文献   

12.
In pursuit of neurological therapies, the opioid system, specifically delta opioid receptors and delta opioid peptides, demonstrates promising therapeutic potential for stroke, Parkinson’s disease, and other degenerative neurological conditions. Recent studies offer strong evidence in support of the therapeutic use of delta opioid receptors, and provide insights into the underlying mechanisms of action. Delta opioid receptors have been shown to confer protective effects by mediating ionic homeostasis and activating endogenous neuroprotective pathways. Additionally, delta opioid agonists such as (D-Ala 2, D-Leu 5) enkephalin (DADLE) have been shown to decrease apoptosis and promote neuronal survival. In its entirety, the delta opioid system represents a promising target for neural therapies.  相似文献   

13.
The mu opioid receptor has a distinct place in the opioid receptor family, since it mediates the actions of most opioids used clinically (e.g., morphine and fentanyl), as well as drugs of abuse (e.g., heroin). The single-copy mu opioid receptor gene, OPRM1, goes through extensive alternative pre-mRNA splicing to generate numerous splice variants that are conserved from rodents to humans. These OPRM1 splice variants can be classified into three structurally distinct types: (1) full-length 7 transmembrane (TM) carboxyl (C)-terminal variants; (2) truncated 6TM variants; and (3) single TM variants. Distinct pharmacological functions of these splice variants have been demonstrated by both in vitro and in vivo studies, particularly by using several unique gene-targeted mouse models. These studies provide new insights into our understanding of the complex actions of mu opioids with regard to OPRM1 alternative splicing. This review provides an overview of the studies that used these gene-targeted mouse models for exploring the functional importance of Oprm1 splice variants.  相似文献   

14.
Gi-protein-biased agonists with minimal β-arrestin recruitment represent opportunities to overcome the serious adverse effects of human mu opioid receptor (μ-OR) agonists and developing alternative and safe treatments for pain. In order to discover novel non-morphinan opioid receptor agonists, we applied hierarchical virtual screening of our in-house database against a pharmacophore based on modeling the active conformations of opioid receptors. We discovered an initial hit compound, a novel μ-OR agonist with a pyrazoloisoquinoline scaffold. We applied computational R-group screening to this compound and synthesized 14 derivatives predicted to be the best. Of these, a new Gi-protein-biased compound, 1-{5-(3-chlorophenyl)-7,8-dimethoxy-3-[4-(methylsulfonyl)benzyl]-3H-pyrazolo[3,4-c]isoquinolin-1-yl}-N,N-dimethylmethanamine, showed an EC50 value of 179 nm against the μ-OR. This resulted in significant pain relief for mice in the phase II period of formalin response tests. This study provides a new strategy to identify diverse sets of promising compounds that might prove useful for the development of drugs that target other G-protein-coupled receptors.  相似文献   

15.
Biphalin, one of the opioid agonists, is a dimeric analog of enkephalin with a high affinity for opioid receptors. Opioid receptors are widespread in the central nervous system and in peripheral neuronal and non-neuronal tissues. Hence, these receptors and their agonists, which play an important role in pain blocking, may also be involved in the regulation of other physiological functions. Biphalin was designed and synthesized in 1982 by Lipkowski as an analgesic peptide. Extensive further research in various laboratories on the antinociceptive effects of biphalin has shown its excellent properties. It has been demonstrated that biphalin exhibits an analgesic effect in acute, neuropathic, and chronic animal pain models, and is 1000 times more potent than morphine when administered intrathecally. In the course of the broad conducted research devoted primarily to the antinociceptive effect of this compound, it has been found that biphalin may also potentially participate in the regulation of other opioid system-dependent functions. Nearly 40 years of research on the properties of biphalin have shown that it may play a beneficial role as an antiviral, antiproliferative, anti-inflammatory, and neuroprotective agent, and may also affect many physiological functions. This integral review analyzes the literature on the multidirectional biological effects of biphalin and its potential in the treatment of many opioid system-dependent pathophysiological diseases.  相似文献   

16.
G-protein coupled receptors (GPCRs) are membrane proteins that convey extracellular signals to the cellular milieu. They represent a target for more than 30% of currently marketed drugs. Here we review the effects of membrane cholesterol on the function of GPCRs of Class A. We review both the specific effects of cholesterol mediated via its direct high-affinity binding to the receptor and non-specific effects mediated by cholesterol-induced changes in the properties of the membrane. Cholesterol binds to many GPCRs at both canonical and non-canonical binding sites. It allosterically affects ligand binding to and activation of GPCRs. Additionally, it changes the oligomerization state of GPCRs. In this review, we consider a perspective of the potential for the development of new therapies that are targeted at manipulating the level of membrane cholesterol or modulating cholesterol binding sites on to GPCRs.  相似文献   

17.
Nearly 20% of elderly patients suffer from constipation, but the age-related changes in the gastrointestinal (GI) tract remain insufficiently elucidated. In this study, the alterations within the endogenous opioid system (EOS) as a potential cause of constipation in the elderly were evaluated. The GI functions were assessed in vitro and in vivo and compared between 6-, 12- and 18-month old mice. Moreover, the effect of opioid receptor (MOP, DOP, KOP) agonists on the mouse GI tract functions and the EOS components expression in mouse tissues and colonic biopsies from patients with functional constipation were determined. In the oldest mice, the GI peristalsis was significantly impaired as compared to the younger groups. The tissue response to MOP and DOP, but not KOP, agonists weakened with age in vitro; for DOP, it was confirmed in vivo. In the mouse upper GI tract, Oprm1, Oprd1, Oprk1 expression decreased with age; in the colon, Oprm1 expression increased. There were no differences in the expression of these genes in the colonic biopsies from patients >50 years old as compared to the younger group. In conclusion, the age-related impairment of the GI peristalsis may result from reduced MOP and DOP response to the activation with opioid agonists or the alterations in the EOS expression.  相似文献   

18.
Molecular models of the trans-membrane domains of delta, kappa and mu opioid receptors, members of the G-protein coupled receptor (GPCR) superfamily, were developed using techniques of homology modeling and molecular dynamics simulations. Structural elements were predicted from sequence alignments of opioid and related receptors based on (i) the consensus, periodicities and biophysical interpretations of alignment- derived properties, and (ii) tertiary structure homology to rhodopsin. Initial model structures of the three receptors were refined computationally with energy minimization and the result of the first 210 ps of a 2 ns molecular dynamics trajectory at 300K. Average structures from the trajectory obtained for each receptor subtype after release of the initial backbone constraints show small backbone deviations, indicating stability. During the molecular dynamics phase, subtype-differentiated residues of the receptors developed divergent structures within the models, including changes in regions common to the three subtypes and presumed to belong to ligand binding regions. The divergent features developed by the model structures appear to be consistent with the observed ligand binding selectivities of the opioid receptors. The results thus implicate identifiable receptor microenvironments as primary determinants of some of the observed subtype specificities in opiate ligand binding and in functional effects of mutagenesis. Networks of interacting residues observed in the models are common to the opiate receptors and other GPCRs, indicating core interfaces that are potentially responsible for structural integrity and signal transduction. Analysis of extended molecular dynamics trajectories reveals concerted motions of distant parts of ligand-binding regions, suggesting motion-sensitive components of ligand binding. The comparative modeling results from this study help clarify experimental observations of subtype differences and suggest both structural and dynamic rationales for differences in receptor properties.   相似文献   

19.
Human somatostatin receptor subtype 5 (hSSTR5) regulates cell proliferation and hormone secretion. However, the identification of effective therapeutic small‐molecule ligands is impeded because experimental structures are not available for any SSTR subtypes. Here, we predict the ensemble of low‐energy 3D structures of hSSTR5 using a modified GPCR Ensemble of Structures in Membrane BiLayer Environment (GEnSeMBLE) complete sampling computational method. We find that this conformational ensemble displays most interhelical interactions conserved in class A G protein‐coupled receptors (GPCRs) plus seven additional interactions (e.g., Y2.43–D3.49, T3.38–S4.53, K5.64–Y3.51) likely conserved among SSTRs. We then predicted the binding sites for a series of five known antagonists, leading to predicted binding energies consistent with experimental results reported in the literature. Molecular dynamics (MD) simulation of 50 ns in explicit water and lipid retained the predicted ligand‐bound structure and formed new interaction patterns (e.g. R3.50–T6.34) consistent with the inactive μ‐opioid receptor X‐ray structure. We suggest more than six mutations for experimental validation of our prediction. The final predicted receptor conformations and antagonist binding sites provide valuable insights for designing new small‐molecule drugs targeting SSTRs.  相似文献   

20.
Cannabinoids and opioids systems share numerous pharmacological properties and antinociception is one of them. Previous findings have shown that mitragynine (MG), a major indole alkaloid found in Mitragyna speciosa (MS) can exert its antinociceptive effects through the opioids system. In the present study, the action of MG was investigated as the antinociceptive agent acting on Cannabinoid receptor type 1 (CB1) and effects on the opioids receptor. The latency time was recorded until the mice showed pain responses such as shaking, licking or jumping and the duration of latency was measured for 2 h at every 15 min interval by hot plate analysis. To investigate the beneficial effects of MG as antinociceptive agent, it was administered intraperitoneally 15 min prior to pain induction with a single dosage (3, 10, 15, 30, and 35 mg/kg b.wt). In this investigation, 35 mg/kg of MG showed significant increase in the latency time and this dosage was used in the antagonist receptor study. The treated groups were administered with AM251 (cannabinoid receptor-1 antagonist), naloxone (non-selective opioid antagonist), naltrindole (δ-opioid antagonist) naloxonazine (μ1-receptor antagonist) and norbinaltorpimine (κ-opioid antagonist) respectively, prior to administration of MG (35 mg/kg). The results showed that the antinociceptive effect of MG was not antagonized by AM251; naloxone and naltrindole were effectively blocked; and norbinaltorpimine partially blocked the antinociceptive effect of MG. Naloxonazine did inhibit the effect of MG, but it was not statistically significant. These results demonstrate that CB1 does not directly have a role in the antinociceptive action of MG where the effect was observed with the activation of opioid receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号