首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the H approximate I/O linearization formulation and μ‐synthesis are employed to design a nonlinear controller for an aircraft longitudinal flight control problem. We propose modified nonlinear H controller formulas to approximately linearize the system and use μ‐synthesis to address tracking, regulation, and robustness issues.  相似文献   

2.
In this paper, the H input/output (I/O) linearization formulation is applied to design an inner‐loop nonlinear controller for a nonlinear ship course‐keeping control problem. Due to the ship motion dynamics are non‐minimum phase, it is impossible to use the ordinary feedback I/O linearization to resolve. Hence, the technique of H I/O linearization is proposed to obtain a nonlinear H controller such that the compensated nonlinear system approximates the linear reference model in I/O behaviour. Then a μ‐synthesis method is employed to design an outer‐loop robust controller to address tracking, regulation, and robustness issues. The time responses of the tracking signals for the closed‐loop system reveal that the overall robust nonlinear controller is able to provide robust stability and robust performance for the plant uncertainties and state measurement errors. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Two H optimization problems of a nonlinear tracking control system: the problem of a nonlinear controller and the problem of a nonlinear plant are considered in the paper. The describing function method is used for linearization of a feedback control system. Theorems, which enable one to replace the optimization of a nonlinear system by the optimization of an approximate linear system are proven in the paper. Methods of H optimization are used to find the structure of an optimal controller of the approximate system. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
The H almost disturbance decoupling problem is considered. In this paper, a nonlinear design is proposed to find a state feedback controller for bilinear systems. The closed‐loop system is internally stable and achieves disturbance attenuation in nonlinear H sense. We defined a special form of Lyapunov function, which is constructed in terms of one or a set of positive definite constant matrices. If, except of the origin of system, the corresponding polynomial of the positive definite matrix (or several polynomials relevant to the positive definite constant matrices) has (have) no zero on a given subset of state space, then we can construct a controller to solve our problem. It is found that the controller structure could be complicated, but is feasible in computation and may require optimization technique to search the solution. We consider both SIMO and MIMO cases with illustrated examples.  相似文献   

5.
In this paper the problems of the suboptimal H controller order reduction and strictly positive real (SPR) controller order reduction via coprime factorization are studied. The sufficient conditions to ensure the reduced order controllers also being suboptimal H controllers and SPR are given, respectively. The conditions presented may be considered as frequency weighted model reduction problems. We generalize the result of C?(θ) approach in Goddard (Ph.D. Thesis, Trinity College, Cambridge, 1995) for controller order reduction with an H framework and the relationship between our results and some other existing results is established. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we investigate the H control problem for a class of cascade switched nonlinear systems consisting of two nonlinear parts which are also switched systems using the multiple Lyapunov function method. Firstly, we design the state feedback controller and the switching law, which guarantees that the corresponding closed‐loop system is globally asymptotically stable and has a prescribed H performance level. This method is suitable for a case where none of the switched subsystems is asymptotically stable. Then, as an application, we study the hybrid H control problem for a class of nonlinear cascade systems. Finally, an example is given to illustrate the feasibility of our results. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

7.
This paper describes the robust control system design for a ship dynamic positioning system. The control design is based on an approximate linear model derived from the nonlinear hydrodynamic equations governing the horizontal motions of the ship. The nonlinear models of the ship, seawaves, current, wind and thrusters are derived and simulated for control design verification. The H control design technique is employed to design the controller. The control problem is formulated in state‐space form and the design specifications are translated into requirements on the weighting functions of the error signal and the thrusters input. A tuning procedure is proposed based on the wind and wave disturbances. The controller is initially tested on the nonlinear ship model and simulation results are presented to demonstrate the robustness of the H controller. Tank tests results are then presented to assess the controller performance. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Reliable L2 gain bounding (i.e., H) controllers for nonlinear systems are designed by using redundant control elements. One sensor and one actuator are duplicated, and the resulting closed-loop system is reliable with respect to both the single contingency case and the primary contingency case. The design procedures for reliable controllers are developed by using the Hamilton–Jacobi inequalities from nonlinear H control theory. Linear reliable controller design methods are also obtained by restricting the proposed nonlinear methods to the linear case, and the linear methods are found to be less conservative than existing methods for linear reliable controller design. Examples are given to illustrate the design procedures for both linear and nonlinear reliable controllers and the advantages of the proposed linear method over existing ones. © 1997 by John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the problem of time-varying H fuzzy control for a class of semi-Markov jump nonlinear systems in the sense of σ-error mean square stability. The nonlinear plant is described via the Takagi–Sugeno fuzzy model. By defining a time-varying mode-dependent Lyapunov function, a set of sufficient stability and stabilisation criteria for non-disturbance case is first derived and then applied to the investigation of H performance analysis and H fuzzy controller design problems of semi-Markov jump nonlinear systems. Different from the traditional stochastic switching system framework, the probability density function of sojourn time is exploited to circumvent the complex computation of transition probabilities. The derived conditions can cover the time-invariant mode-dependent and time-invariant mode-independent H fuzzy control schemes as special cases. A classic cart-pendulum system is presented to demonstrate the effectiveness and advantages of the proposed theoretical results.  相似文献   

10.
In this paper, both state and output feedback robust H control problems for general nonlinear systems with norm‐bound uncertainty are considered. Sufficient conditions for the existence of robust output feedback H controller are provided. State space formulas for robust H output controller are provided.  相似文献   

11.
12.
This paper investigates the stabilization and H control problem of nonlinear switched Hamiltonian systems (NSHSs) subject to actuator saturation (AS) under arbitrary switching paths. First, based on the saturating actuator property, an appropriate state feedback is designed under a realistic assumption for the stabilization of NSHSs with AS. Then, an H controller is designed for NSHSs subject to AS with external disturbances in order to attenuate the disturbances. Futhermore, the results obtained for NSHSs are applied to study the stabilization and H control of switched nonlinear systems with AS via the Hamiltonian realization method. Finally, simulation examples show the efficiency of the methods and results proposed in this paper.  相似文献   

13.
14.
This paper focuses on a new H controller design issue for networked control systems with external disturbance as well as random time delays and packet dropouts in forward and feedback channels, which are modeled by multiple Markov chains in a unified style. The output feedback controller is designed to stabilize the networked control system and also achieves the prescribed H disturbance attenuation level. The addressed controller design problem is transformed into a nonlinear minimization problem with LMI constraints. An illustrative example is provided to show the effectiveness of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper examines the ability of the H design methodology to provide a solution to a gas- or oil-fired boiler control problem, and addresses the nontrivial application issues of the H design. The H methodology is applied to an experimentally verified heating-cogeneration boiler model which exhibits nonlinearities, instability, time delays, non-minimum phase behaviour, and coloured noise disturbances with sensor noise in the frequency range of the significant plant dynamics. The design shows that, to satisfy performance criteria, a high order controller is needed. The paper also demonstrates a trade-off between the reduction of controller order and the loss of controller performance.  相似文献   

16.
This paper investigates the problem of delay‐dependent robust stochastic stabilization and H control for uncertain stochastic nonlinear systems with time‐varying delay. System uncertainties are assumed to be norm bounded. Firstly, by using novel method to deal with the integral terms, robustly stochastic stabilization results are obtained for stochastic uncertain systems with nonlinear perturbation, and an appropriate memoryless state feedback controller can be chosen. Compared with previous results, the new technique can sufficiently utilize more negative items information. Then, robust H control for uncertain stochastic system with time‐varying delay and nonlinear perturbation is considered, and the controller is designed, which will guarantee that closed‐loop system is robustly stochastically stable with disturbance attenuation level. Finally, two numerical examples are listed to illustrate that our results are effective and less conservative than other reports in previous literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A new approach for the design of robust H observers for a class of Lipschitz nonlinear systems with time‐varying uncertainties is proposed based on linear matrix inequalities (LMIs). The admissible Lipschitz constant of the system and the disturbance attenuation level are maximized simultaneously through convex multiobjective optimization. The resulting H observer guarantees asymptotic stability of the estimation error dynamics and is robust against nonlinear additive uncertainty and time‐varying parametric uncertainties. Explicit norm‐wise and element‐wise bounds on the tolerable nonlinear uncertainty are derived. Also, a new method for the robust output feedback stabilization with H performance for a class of uncertain nonlinear systems is proposed. Our solution is based on a noniterative LMI optimization and is less restrictive than the existing solutions. The bounds on the nonlinear uncertainty and multiobjective optimization obtained for the observer are also applicable to the proposed static output feedback stabilizing controller. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The paper presents a quaternion feedback attitude control law for spacecraft attitude maneuver. A nonlinear feedback controller is designed to achieve L2 gain performance, i.e., the resulting closed‐loop system is designed such that the L2 gain from the exogenous disturbance to the performance measure is less than a scalar. The solution of the nonlinear H control problem is known to be related to the existence of a solution to the Hamilton‐Jacobi inequality. In the paper, a solution for spacecraft attitude control is conjectured and shown to satisfy the H criterion. The result generalizes existing methods in two regards: the proposed Hamilton‐Jacobi function is more general than existing ones and the resulting controller contains a nonlinear term that can be used to address the nonlinear couplings between quaternion terms. The method is applied to the ROCSAT‐3 orbit raising control problem to verify its effectiveness.  相似文献   

19.
A novel decentralised indirect adaptive output feedback fuzzy controller with a compensation controller and an H tracking controller is presented for a class of uncertain large-scale nonlinear systems in this article. The compensator adaptively compensates for interconnections between subsystems as well as mismatched errors, while the H controller suppresses the effect of external disturbances. Based upon the combination of fuzzy inference systems, a state observer, H tracking technique and the strictly positive real condition, the proposed overall observer-based decentralised algorithm guarantees not only asymptotical tracking of reference trajectories but also an arbitrary small attenuation level of the unmodelled error dynamics including the disturbances on the tracking control. Simulation results substantiate the effectiveness of the proposed scheme.  相似文献   

20.
This paper deals with the problem of finite-time-horizon robust H control via measurement feedback, for affine nonlinear systems with nonlinear time-varying parameter uncertainty. The problem addressed is the design of a control law, which processes the measured output and guarantees a prescribed level of closed-loop disturbance attenuation. Conditions for the existence of such a controller are obtained by solving an auxiliary control problem for a related system which is obtained from the original one by converting the parameter uncertainty into exogenous bounded energy signals. This approach allows us to apply the recently developed H nonlinear control techniques to solve the robust control problem. The problem is investigated in both the continuous- and discrete-time cases. The results are demonstrated by a simple example. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号