首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对城市道路的交通标志在真实路况中存在光照不均、遮挡等因素导致的在目标检测任务中出现参数量过多、检测速度慢等问题,文章基于原有YOLOv5s的网络框架提出一种改进后的目标检测网络Shuffle-Block,首先选用开源的CCTSDB数据集进行实验,引入Shuffle-Block模块替换YOLOv5s原始的CSPDarknet主干网络,使得YOLOv5s的网络模型轻量化,降低模型的复杂程度。  相似文献   

2.
文中提出了一种基于改进YOLOv4的交通标志识别方法,用于解决当前在交通标志识别任务中基于深度学习方法实时性较差、准确度较低的问题。在原版YOLOv4网络架构的基础上,使用原始的Darknet残差层替代了CSPDarknet53的CSP阶段,并对YOLOv4的PAN体系进行了CSP化,降低了运算量。用改进后的YOLOv4算法进行交通标志的特征提取,经过迁移学习对模型进行调整后实现了道路环境下交通标志的识别。为了测试改进算法的性能,在TT100K交通标志数据集上进行相关识别任务实验。实验结果表明,该算法的平均水平精度值(m AP)达到了86%,相较于原版YOLOv4算法提升了2.6%,每秒帧数(FPS)相较于原版YOLOv4算法提升了4.1。改进算法在检测精度和检测速度上较原版算法均有一定的提升。  相似文献   

3.
4.
5.
6.
随着无人驾驶技术的发展,交通标志检测对于维护交通秩序、降低交通事故频率意义重大。针对交通标志因尺寸小、密度高或背景复杂导致检测精度降低的问题,提出一种改进的YOLOv5s算法。首先,将ConvNeXt_Block嵌入YOLOv5s的Backbone和Head部分,增强YOLOv5s特征提取网络的特征提取能力,提升模型检测精度;其次,引入轻量级通用上采样算子CARAFE,在不带来过多参数量和计算量的前提下,更好地利用特征图的信息,同样带来精度提升。使用该模型处理TT100K数据集,达到79.9%的检测精度,在YOLOv5s算法的基础上提高了1.8%,帧处理速率达到74 FPS,仍然符合实时性的要求。实验结果充分验证,改进模型在真实的交通标志检测场景中兼具实时性与准确性。  相似文献   

7.
针对目前自动驾驶过程中对交通标志的识别检测速度慢的问题,提出一种改进的YOLOv5s-Ghost网络模型对交通标志进行识别的方法,在3×3运算核Ghost Net模型框架下,通过两个连续的Ghost模块构建的Ghost Bottleneck模块,并代替C3模块中全部的Bottleneck模块,与跨阶段局部网络(cross-stage position network, CSPNet)模块结合生成Ghost Bottleneck CSP模块。通过调整每个模块中加入Ghost Bottleneck模块的数量,对比实验数据得到最佳网络模型。分别用原网络和新网络对TT100K数据集进行训练,对比实验数据表明,YOLOv5s-Ghost模型的检测精度达95.1%,检测速度达到了52.6 FPS,模型大小压缩了69.3%,在保证原检测精度的情况下提高了网络的检测速度。  相似文献   

8.
随着城市人口的不断增加,不同的车辆使得交通状况越来越复杂。对此番现象进行研究之后,提出了一种改进的YOLOv5深度神经网络模型来实现交通中的车辆识别与检测,将有效帮助交通管理部门分析车辆和行人的运行状况。在分析YOLOv5算法的核心后,并针对交通目标尺度变化大的特点,充分利用了YOLOv5算法检测轻量化、速度快、实时性强的性质,并在此基础上,用FPN架构改进网络结构以便适应目标尺度的剧烈变化,用改进的K-means算法选出更加适合的初始候选框,不仅提高了运行速度,而且满足了实时性和准确性的要求,最终获得了较为成功的目标检测效果及其方案。  相似文献   

9.
10.
提出一种改进YOLOv5网络,并将其用于SAR图像目标识别。为了优化网络性能,文中进行了三个方面的改进:使用宽度比和高度比作为标注框之间的距离度量,并采用k-means聚类方法生成先验锚点框,作为预测框优化时的框尺寸初始值;改进框回归损失函数,引入Scylla交并比来代替竞争性交并比,以提高对密集分布目标的定位精度;改进置信度损失函数,使用焦点损失来替代二元交叉熵,以提高在复杂背景下的目标识别精度。基于MSAR数据集,选择了YOLOv3、常规YOLOv5作为对比网络,进行了大量的SAR图像目标识别实验。实验结果表明,相比两种对比网络,改进YOLOv5网络对各种目标均具有更高的识别准确率、召回率和F1值,以及更高的综合指标平均精度值和平均精度均值。  相似文献   

11.
煤炭资源在开采的过程中会伴随着产生一种名为煤层气的产物,煤层气又称为瓦斯,若将瓦斯直接排放至大气中,则会造成严重的温室效应,研究发现瓦斯可以通过燃烧用来发电,但瓦斯在发电过程中遇到明火,则会发生爆炸,给工作人员及企业会造成不可估量的损失,因此检测瓦斯发电站内的火焰情况,成为了解决瓦斯发电站爆炸事故的重要目标.基于火焰识...  相似文献   

12.
为了解决复杂背景下,绝缘子准确快速识别的实时性问题,提出了一种基于YOLOv5改进的轻量型绝缘子检测算法模型。在网络结构中融入了Shufflenet v2网络和深度卷积模块,通过控制通道数和减少网络层数来减少参数量,采用K-means算法调整anchor框,并提出了改进损失函数DCIoU加速了损失函数的收敛。实验结果表明,改进的YOLOv5算法在参数量上仅有原网络的10%,准确率提高了0.2%,推理速度提升了2帧。  相似文献   

13.
马德里指纹错案的出现使得现行指纹鉴定体系不断受到挑战和质疑。以指纹二级特征的统计规律为基础的量化鉴定技术成为了新的研究难点与热点,而指纹二级特征的自动检测与分类是实现指纹二级特征自动统计的基础。因此,提出一种基于YOLOv5的指纹二级特征检测方法。首先,建立指纹二级特征数据集,共包含4000张带标注的指纹图像;其次,根据指纹二级特征点尺寸小且分布密集的特点,对YOLOv5网络结构进行改进,删除原有的32倍下采样大目标特征检测层,添加新的微小特征融合层;再使用Feature Pyramid Networks(FPN)、Pyramid Attention Network(PAN)和Spatial Pyramid Pooling(SPP)结构通过融合多种尺度的方式实现局部特征和全局特征提取;最后,添加Squeeze-and-Excitation(SE)通道注意力机制模块,有效增强模型的鲁棒性和密集小目标的检测能力。实验结果表明,相比于原模型,改进后YOLOv5s_FI模型,在检测速度基本不变的情况下,平均精度均值(mAP0.5)从93.0%提高到97.4%,且权重缩减了3/4。  相似文献   

14.
坦克目标的准确识别定位是信息化战争中一项重要研究,针对传统检测算法抗干扰性差、难应用于大视野复杂环境下的问题,提出了一种基于改进YOLOv5坦克自动识别的检测算法。利用YOLOv5模型对大视野复杂战场环境下坦克目标进行识别:在YOLOv5基础模型中引入Attention-based information fusion模块,提高模型检测精度和识别能力;使用Pre-segment multi-scale fusion模块解决骨干网络中池化操作所造成的信息丢失问题;使用Swin Transformer机制降低小目标坦克漏检误检的问题。在坦克数据集上进行实验,结果表明:与YOLOv5原始模型相比,改进模型的召回率、平均精度分别提高了9.1%、5.1%。改进后的YOLOv5模型可以很好地对大视野复杂环境下坦克目标进行精确识别,改善了坦克目标检测中小目标漏检的问题。  相似文献   

15.
针对传统的路面缺陷检测算法,路面缺陷特征提取单一,且依赖于人工提取,导致检测效率低下的问题,提出了一种基于改进YOLOv5的路面缺陷检测算法。针对原算法对路面缺陷的位置信息提取不充分,引入CBAM注意力机制并对空间注意力中的7*7卷积层替换为3个串行5*5卷积后使用1*1卷积融合3个不同感受野下的特征信息,增强提取缺陷位置信息的能力。在训练阶段,增加正样本的数量,缓解模型训练时的正负样本不均衡。为证明该算法的有效性,在公共数据集GRDDC2020上进行验证,实验表明,改进后的YOLOv5算法F1-score相比于原YOLOv5算法提高2.1%,达到57.7%。  相似文献   

16.
随着深度学习的不断发展,汽车自动驾驶已成为一种趋势,自动驾驶的安全问题是最重要的。其中,能准确识别复杂环境下密集的交通指示牌是保障安全驾驶的一个重要环节,针对目前检测模型对交通指示牌召回率不够高的问题,在YOLOv5的基础上提出了YOLOv5-ACB。经过300次的迭代训练,实验结果表明YOLOv5-ACB模型的mAP为62.9%、mAP50为83.6%、召回率为76.6%,相比原始的YOLOv5模型的mAP为62.45%、mAP50为82.6%、召回率为74.6%,均有较好的提升,说明所提出的改进模型降低了交通指示牌的错检和漏检率。  相似文献   

17.
18.
航拍图像识别广泛应用于各类军用、民用领域,因其距离远、成像模糊、目标相互遮挡等特点使得目标检测准确度一直不高,针对这一问题,提出了一种基于YOLOv5模型的改进方法。通过引入数据增强和标签平滑方法、改进损失函数为DIoU和增加针对小目标的网络处理层来提高目标检测效果。实验结果表明,在相同训练条件下,改进后的YOLOv5算法对大多数种类的目标检测准确率都有所提升,平均精确率提高了17%,平均召回率提高了2%,mAP@0.5达到了70.4%,比原始模型提升了6.1%。  相似文献   

19.
针对海面目标检测模型难以应用在存储能力和计算能力较小的移动端的问题,提出一种基于改进YOLOv5的海面目标检测算法。采用轻量级提取网络ShuffleNetv2 Block作为YOLOv5网络的骨干部分,减少模型计算量和参数量;使用加权双向特征金字塔网络模块替换原特征融合网络模块,提高网络对不同尺度的特征提取能力;引入坐标注意力机制,提高模型检测精度。在海面目标数据集上进行实验,结果表明:与YOLOv5模型相比,改进模型的精确率、召回率、平均精度分别提高了1.2%、1.4%、0.9%,计算量和参数量分别降低了55.8%,54.9%。改进后的YOLOv5模型不仅提高了检测精度和模型性能,还压缩了模型的计算量和参数量,有利于部署在移动设备端。  相似文献   

20.
针对煤矿井下环境多利用红外相机感知周边环境温度成像,但形成的图像存在纹理信息少、噪声多、图像模糊等问题,该文提出一种可用于煤矿井下实时检测的多尺度卷积神经网络(Ucm-YOLOv5)。该网络是在YOLOv5的基础上进行改进,首先使用PP-LCNet作为主干网络,用于加强CPU端的推理速度;其次取消Focus模块,使用shuffle_block模块替代C3模块,在去除冗余操作的同时减少了计算量;最后优化Anchor同时引入H-swish作为激活函数。实验结果表明,Ucm-YOLOv5比YOLOv5的模型参数量减少了41%,模型缩小了86%,该算法在煤矿井下具有更高的检测精度,同时在CPU端的检测速度达到实时检测标准,满足煤矿井下目标检测的工作要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号