首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
Myotonic dystrophy type 1 (DM1) is a severe neuromuscular disease mediated by a toxic gain of function of mutant RNAs. The neuropsychological manifestations affect multiple domains of cognition and behavior, but their etiology remains elusive. Transgenic DMSXL mice carry the DM1 mutation, show behavioral abnormalities, and express low levels of GLT1, a critical regulator of glutamate concentration in the synaptic cleft. However, the impact of glutamate homeostasis on neurotransmission in DM1 remains unknown. We confirmed reduced glutamate uptake in the DMSXL hippocampus. Patch clamp recordings in hippocampal slices revealed increased amplitude of tonic glutamate currents in DMSXL CA1 pyramidal neurons and DG granule cells, likely mediated by higher levels of ambient glutamate. Unexpectedly, extracellular GABA levels and tonic current were also elevated in DMSXL mice. Finally, we found evidence of synaptic dysfunction in DMSXL mice, suggestive of abnormal short-term plasticity, illustrated by an altered LTP time course in DG and in CA1. Synaptic dysfunction was accompanied by RNA foci accumulation in localized areas of the hippocampus and by the mis-splicing of candidate genes with relevant functions in neurotransmission. Molecular and functional changes triggered by toxic RNA may induce synaptic abnormalities in restricted brain areas that favor neuronal dysfunction.  相似文献   

4.
Pathogenic CUG and CCUG RNA repeats have been associated with myotonic dystrophy type 1 and 2 (DM1 and DM2), respectively. Identifying small molecules that can bind these RNA repeats is of great significance to develop potential therapeutics to treat these neurodegenerative diseases. Some studies have shown that aminoglycosides and their derivatives could work as potential lead compounds targeting these RNA repeats. In this work, sisomicin, previously known to bind HIV-1 TAR, is investigated as a possible ligand for CUG RNA repeats. We designed a novel fluorescence-labeled RNA sequence of r(CUG)10 to mimic cellular RNA repeats and improve the detecting sensitivity. The interaction of sisomicin with CUG RNA repeats is characterized by the change of fluorescent signal, which is initially minimized by covalently incorporating the fluorescein into the RNA bases and later increased upon ligand binding. The results show that sisomicin can bind and stabilize the folded RNA structure. We demonstrate that this new fluorescence-based binding characterization assay is consistent with the classic UV Tm technique, indicating its feasibility for high-throughput screening of ligand-RNA binding interactions and wide applications to measure the thermodynamic parameters in addition to binding constants and kinetics when probing such interactions.  相似文献   

5.
RNA molecules both contribute to and are causative of many human diseases. One method to perturb RNA function is to target its structure with small molecules. However, discovering bioactive ligands for RNA targets is challenging. Here, we show that the bioactivity of a linear dimeric ligand that inactivates the RNA trinucleotide repeat expansion that causes myotonic dystrophy type 1 [DM1; r(CUG)exp] can be improved by macrocyclization. Indeed, the macrocyclic compound is ten times more potent than the linear compound for improving DM1-associated defects in cells, including in patient-derived myotubes (muscle cells). This enhancement in potency is due to the macrocycle's increased affinity and selectively for the target, which inhibit r(CUG)exp’s toxic interaction with muscleblind-like 1 (MBNL1), and its superior cell permeability. Macrocyclization could prove to be an effective way to enhance the bioactivity of modularly assembled ligands targeting RNA.  相似文献   

6.
7.
Modularly assembled ligands were designed to target the RNAs that cause two currently untreatable neuromuscular disorders, myotonic dystrophy types 1 (DM1) and 2 (DM2). DM1 is caused by an expanded repeating sequence of CUG, and DM2 is caused by expanded CCUG repeats. Both are present in noncoding regions and fold into hairpins with either repeating 1×1 nucleotide UU (DM1) or 2×2 nucleotide 5′‐CU/3′‐UC (DM2) internal loops separated by two GC pairs. The repeats are toxic because they sequester the RNA splicing regulator muscleblind‐like 1 protein (MBNL1). Rational design of ligands targeting these RNAs was enabled by a database of RNA motif–ligand partners compiled by using two‐dimensional combinatorial screening (2DCS). One 2DCS study found that the 6′′‐azido‐kanamycin A module binds internal loops similar to those found in DM1 and DM2. In order to further enhance affinity and specificity, the ligand was assembled on a peptoid backbone to precisely control valency and the distance between ligand modules. Designed compounds are more potent and specific binders to the toxic RNAs than MBNL1 and inhibit the formation of the RNA–protein complexes with nanomolar IC50 values. This study shows that three important factors govern potent inhibition: 1) the surface area sequestered by the assembled ligands; 2) the spacing between ligand modules since a longer distance is required to target DM2 RNAs than DM1 RNAs; and 3) flexibility in the modular assembly scaffold used to display the RNA‐binding module. These results have impacts on the general design of assembled ligands targeting RNAs present in genomic sequence.  相似文献   

8.
Myotonic dystrophy type 1 and 2 (DM1 and DM2) are two multisystemic autosomal dominant disorders with clinical and genetic similarities. The prevailing paradigm for DMs is that they are mediated by an in trans toxic RNA mechanism, triggered by untranslated CTG and CCTG repeat expansions in the DMPK and CNBP genes for DM1 and DM2, respectively. Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of both diseases. In this review, we discuss the available information on epigenetic mechanisms that could contribute to the DMs outcome and progression. Changes in DNA cytosine methylation, chromatin remodeling and expression of regulatory noncoding RNAs are described, with the intent of depicting an epigenetic signature of DMs. Epigenetic biomarkers have a strong potential for clinical application since they could be used as targets for therapeutic interventions avoiding changes in DNA sequences. Moreover, understanding their clinical significance may serve as a diagnostic indicator in genetic counselling in order to improve genotype–phenotype correlations in DM patients.  相似文献   

9.
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder of genetic origin. Progressive muscular weakness, atrophy and myotonia are its most prominent neuromuscular features, while additional clinical manifestations in multiple organs are also common. Overall, DM1 features resemble accelerated aging. There is currently no cure or specific treatment for myotonic dystrophy patients. However, in recent years a great effort has been made to identify potential new therapeutic strategies for DM1 patients. Metformin is a biguanide antidiabetic drug, with potential to delay aging at cellular and organismal levels. In DM1, different studies revealed that metformin rescues multiple phenotypes of the disease. This review provides an overview of recent findings describing metformin as a novel therapy to combat DM1 and their link with aging.  相似文献   

10.
11.
12.
Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3′ polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.  相似文献   

13.
Myotonic dystrophy type 1 (DM1) is a hereditary and multisystemic disease characterized by myotonia, progressive distal muscle weakness and atrophy. The molecular mechanisms underlying this disease are still poorly characterized, although there are some hypotheses that envisage to explain the multisystemic features observed in DM1. An emergent hypothesis is that nuclear envelope (NE) dysfunction may contribute to muscular dystrophies, particularly to DM1. Therefore, the main objective of the present study was to evaluate the nuclear profile of DM1 patient-derived and control fibroblasts and to determine the protein levels and subcellular distribution of relevant NE proteins in these cell lines. Our results demonstrated that DM1 patient-derived fibroblasts exhibited altered intracellular protein levels of lamin A/C, LAP1, SUN1, nesprin-1 and nesprin-2 when compared with the control fibroblasts. In addition, the results showed an altered location of these NE proteins accompanied by the presence of nuclear deformations (blebs, lobes and/or invaginations) and an increased number of nuclear inclusions. Regarding the nuclear profile, DM1 patient-derived fibroblasts had a larger nuclear area and a higher number of deformed nuclei and micronuclei than control-derived fibroblasts. These results reinforce the evidence that NE dysfunction is a highly relevant pathological characteristic observed in DM1.  相似文献   

14.
15.
Myotonic dystrophy type 2 (DM2) is caused by an expansion of CCTG repeats in the zinc‐finger protein gene (ZNF9). Transcribed CCUG repeats sequester muscleblind‐like protein 1 (MBNL1), an important alternative splicing regulator, preventing its normal function, leading to the disease phenotype. We describe a series of ligands that disrupt the MBNL1–r(CCUG)n interaction as potential lead agents for developing DM2 therapeutics. A previously reported triaminopyrimidine–acridine conjugate was a moderate inhibitor in vitro, however it proved to be poorly water‐soluble and not cell‐permeable. To improve its therapeutic potential, the new set of ligands maintained the key triaminopyrimidine recognition unit but replaced the acridine intercalator with a bisamidinium groove binder. The optimized ligands exhibit low micromolar inhibition potency to MBNL1–r(CCUG)8. Importantly, the ligands are the first to show the ability to disrupt the MBNL1–r(CCUG)n foci in DM2 model cell culture and exhibit low cytotoxicity.  相似文献   

16.
Among the trinucleotide repeat disorders, myotonic dystrophy type 1 (DM1) is one of the most complex neuromuscular diseases caused by an unstable CTG repeat expansion in the DMPK gene. DM1 patients exhibit high variability in the dynamics of CTG repeat instability and in the manifestations and progression of the disease. The largest expanded alleles are generally associated with the earliest and most severe clinical form. However, CTG repeat length alone is not sufficient to predict disease severity and progression, suggesting the involvement of other factors. Several data support the role of epigenetic alterations in clinical and genetic variability. By highlighting epigenetic alterations in DM1, this review provides a new avenue on how these changes can serve as biomarkers to predict clinical features and the mutation behavior.  相似文献   

17.
Myotonic dystrophy type 1 (DM1) is the most complex and variable trinucleotide repeat disorder caused by an unstable CTG repeat expansion, reaching up to 4000 CTG in the most severe cases. The genetic and clinical variability of DM1 depend on the sex and age of the transmitting parent, but also on the CTG repeat number, presence of repeat interruptions and/or on the degree of somatic instability. Currently, it is difficult to simultaneously and accurately determine these contributing factors in DM1 patients due to the limitations of gold standard methods used in molecular diagnostics and research laboratories. Our study showed the efficiency of the latest PacBio long-read sequencing technology to sequence large CTG trinucleotides, detect multiple and single repeat interruptions and estimate the levels of somatic mosaicism in DM1 patients carrying complex CTG repeat expansions inaccessible to most methods. Using this innovative approach, we revealed the existence of de novo CCG interruptions associated with CTG stabilization/contraction across generations in a new DM1 family. We also demonstrated that our method is suitable to sequence the DM1 locus and measure somatic mosaicism in DM1 families carrying more than 1000 pure CTG repeats. Better characterization of expanded alleles in DM1 patients can significantly improve prognosis and genetic counseling, not only in DM1 but also for other tandem DNA repeat disorders.  相似文献   

18.
Myotonic dystrophy type 1 (DM1) is caused by CTG-repeat expansions leading to a complex pathology with a multisystemic phenotype that primarily affects the muscles and brain. Despite a multitude of information, especially on the alternative splicing of several genes involved in the pathology, information about additional factors contributing to the disease development is still lacking. We performed RNAseq and gene expression analyses on proliferating primary human myoblasts and differentiated myotubes. GO-term analysis indicates that in myoblasts and myotubes, different molecular pathologies are involved in the development of the muscular phenotype. Gene set enrichment for splicing reveals the likelihood of whole, differentiation stage specific, splicing complexes that are misregulated in DM1. These data add complexity to the alternative splicing phenotype and we predict that it will be of high importance for therapeutic interventions to target not only mature muscle, but also satellite cells.  相似文献   

19.
Muscleblind-like proteins (MBNL) are RNA-binding proteins that bind to the poly(CUG) and poly(CCUG) sequences that are the causative agents of myotonic dystrophy. It has been suggested that as a result of binding to the repeating RNA sequences, MBNL1 is abnormally expressed and translocated, which leads to many of the misregulated events in myotonic dystrophy. In this work, steady-state fluorescence quenching experiments suggest that MBNL1 alters the structure of helical RNA targets upon binding, which may explain the selectivity of MBNL1 for less structured RNA sites. The removal of one pair of zinc fingers greatly impairs the binding affinity of MBNL1, which indicates that the two pairs of zinc fingers might possibly interact with RNA targets cooperatively. Alanine scanning mutagenesis results suggest that the binding energy may be distributed across the protein. Overall, the results presented here suggest that small molecules that stabilize the helical structure of poly(CUG) and poly(CCUG) RNAs will inhibit the formation of complexes with MBNL1.  相似文献   

20.
Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号