首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diamond-particle-dispersed silver (Ag) matrix composite was fabricated in a unique fabrication method, where solid–liquid coexistent state of the powder mixture of diamond, pure Ag and pure Si was designed to create during spark plasma sintering (SPS) process. The composite is well consolidated in a temperature range between 1113 K and 1188 K and no reaction was detected by scanning electron microscopy at the interface between diamond particles and the Ag matrix. The relative packing density of the diamond–Ag composite fabricated was 95–97% in a volume fraction range of diamond between 40% and 50%. The thermal conductivity of the diamond–Ag composite containing 50 vol.% (v/o) diamond reached 717 W/mK, approximately 80% the theoretical thermal conductivity calculated by Maxwell–Eucken’s equation. This result suggests that the solid–liquid co-existent state during SPS consolidation is very effective not only for rapid densification of the composite but also for producing strong bonding between the diamond particles and the Ag matrix.  相似文献   

2.
Aluminum nitride-particle-dispersed aluminum–matrix composites were fabricated in a unique fabrication method, where the powder mixture of AlN, pure Al and Al–5 mass%Si alloy was uniquely designed to form continuous solid–liquid co-existent state during spark plasma sintering (SPS) process. Composites fabricated in such a way can be well consolidated by heating during SPS processing in a temperature range between 798 K and 876 K for a heating duration of 1.56 ks. Microstructures of the composites thus fabricated were examined by scanning electron microscopy and no reaction product was detected at the interface between the AlN particle and the Al matrix. The relative packing density of the Al/AlN composite was almost 100% when volume fraction of AlN is between 40% and 60%. Thermal conductivity of the composite was higher than 180 W/mK at an AlN fraction range between 40 and 65 vol.%, approximately 90% of the theoretical thermal conductivity estimated by Maxwell–Eucken’s model. The coefficient of thermal expansion of the composite falls in the upper line of Kerner’s model, indicating strong bonding between the AlN particle and the Al matrix in the composite.  相似文献   

3.
Al–Li–SiCp composites were fabricated by a modified version of the conventional stir casting technique. Composites containing 8, 12 and 18 vol% SiC particles (40 mm) were fabricated. Hardness, tensile and compressive strengths of the unreinforced alloy and composites were determined. Ageing kinetics and effect of ageing on properties were also investigated. Additions of SiC particles increase the hardness, 0.2% proof stress, ultimate tensile strength and elastic modulus of Al–Li–8%SiC and Al–Li–12%SiC composites. In case of the composite reinforced with 18% SiC particles, although the elastic modulus increases the 0.2% proof stress and compressive strength were only marginally higher than the unreinforced alloy and lower than those of Al–Li–8%SiC and Al–Li–12%SiC composites. Clustering of SiC particles appears to be responsible for reduced the strength of Al–Li–18%SiC composite. The fracture surface of unreinforced 8090 Al-Li alloy (8090Al) shows a dimpled structure, indicating ductile mode of failure. Fracture in composites occurs by a mixed mode, giving rise to a bimodal distribution of dimples in the fracture surface. Cleavage of SiC particles was also observed in the fracture surface of composites. Composites show higher peak hardness and lower peak ageing time compared with unreinforced 8090Al alloy. Macroand microhardness increase significantly after peak ageing. Ageing also results in considerable improvement in strength of the unreinforced 8090Al alloy and its composites. This is attributed to formation of δ' (Al3Li) and S' (Al2CuMg) precipitates during ageing. Per cent elongation, however, decreases due to age hardening. Al–Li–12%SiC, which shows marginally lower UTS and compressive strength than the Al–Li–8%SiC composite in extruded condition, exhibits higher strength than Al–Li–8%SiC in peak-aged condition.  相似文献   

4.
A carbon fiber reinforced silicon carbide matrix (C/C–SiC) composites material was manufactured by introducing a filler into the liquid silicon infiltration (LSI) process. The filler consisted of Si:Carbon black = 1:1 mixed with a phenol resin. Use of the filler resulted in a negligible reduction in the residual free Si of approximately 0.7% but increased 15% of reacted SiC amount. Dilatometer and X-ray diffraction (XRD) evaluations also confirmed improved formation of reaction-bonded silicon carbide (SiC) in the matrix. The wear rate was decreased more than 2.5-fold, indicating significantly improved wear-resistance properties. However, flexural strength gradually decreased and fiber damage was observed in fracture surface with increases in filler content.  相似文献   

5.
Abstract

Composites with an Al–Mg–Si alloy matrix containing 20 vol.-% of either Si3N4 whiskers or Si3N4 particulates were extruded at 773 K with a reduction ratio of 100: 1, and tensile experiments were performed under conditions of constant true strain rate. Recrystallisation and dynamic precipitation occurred during hot extrusion so that very small grain sizes of less than ~ 3 ;amp;#x03BC;m were produced. The extruded composites showed superplastic behaviour at high strain rates (above 10?1 S?1). The high strain rate superplasticity of the composites is attributed to the very small grain sizes. Internal cavities developed during straining and density studies revealed that the rate of increase of the extent of cavitation was lower at a temperature slightly above the partial melting temperature than at a temperature lower than the partial melting temperature. It is concluded that the presence of a liquid phase restricts the development of cavities because the liquid phase serves to relax the stress concentrations.

MST/3139  相似文献   

6.
Polymeric composites with high thermal conductivity, high dielectric permittivity but low dissipation factor have wide important applications in electronic and electrical industry. In this study, three phases composites consisting of poly(vinylidene fluoride) (PVDF), Al nanoparticles and β-silicon carbide whiskers (β-SiCw) were prepared. The thermal conductivity, morphological and dielectric properties of the composites were investigated. The results indicate that the addition of 12 vol% β-SiCw not only improves the thermal conductivity of Al/PVDF from 1.57 to 2.1 W/m K, but also remarkably increases the dielectric constant from 46 to 330 at 100 Hz, whereas the dielectric loss of the composites still remain at relatively low levels similar to that of Al/PVDF at a wider frequency range from 10−1 Hz to 107 Hz. With further increasing the β-SiCw loading to 20 vol%, the thermal conductivity and dielectric constant of the composites continue to increase, whereas both the dielectric loss and conductivity also rise rapidly.  相似文献   

7.
Primary Si particles reinforced Al–Si surface composites (Sip/Al–Si surface composites) were prepared by means of ultrasonic equipment with a special horn crucible. The microstructure and properties of the surface composites were investigated using optical microscope, scanning electron microscopy (SEM), hardness meter and friction and wear tester. The results show that when Al–12%Si alloy was treated by ultrasonic, Si element was easy to move up because of the decrease of the viscosity of the melt, and the alloy composition at the top of the melt became hypereutectic. So, a mass of primary Si particles formed in this place. The thickness of the surface composite layer in the surface composites decreased with increasing the ultrasonic input power. The average size of the primary Si particles in the surface composite layer was larger than that of Al–Si alloy untreated by the ultrasonic and increased with increasing ultrasonic input power. The top layer hardness of Sip/Al–Si surface composites is higher than that of Al–Si alloy without ultrasonic treatment and increased with increasing ultrasonic input power. The friction coefficients of the top layers of the surface composites are lower than that untreated by ultrasonic. The friction coefficient decreased with increasing ultrasonic input power. With the increase of the applied load, the friction coefficient of the top layer of the surface composites increased. The wear mass loss of Sip/Al–Si surface composites is lower than that Al–Si alloy without ultrasonic treatment. The wear resistance of the surface composites was improved with increasing ultrasonic input power.  相似文献   

8.
Abstract

The characterisation of thermal expansion coefficient and thermal conductivity of Al–Si matrix alloy and Al–Si alloy reinforced with fine SiCp (5 and 20 wt-%) composites fabricated by stir casting process are investigated. The results show that with increasing temperature up to 350°C, thermal expansion of composites increases and slowly reduces when the temperature reaches to 500°C. The values of both thermal expansion and conductivity of composites are less than those for Al–Si matrix. Microstructure and particles/matrix interface properties play an important role in the thermal properties of composites. Thermal properties of composites are strongly dependent on the weight percentage of SiCp.  相似文献   

9.
Abstract

In the present study, elemental magnesium and magnesium–silicon carbide composites were synthesised using the methodology of fluxless casting followed by hot extrusion. Microstructural characterisation studies revealed low porosity and a completely recrystallised matrix in every material. The average size of the recrystallised grains was found to decrease with an increasing presence of SiC particulates. For the reinforced magnesium, fairly uniform distribution of SiC particulates and good SiC–Mg interfacial integrity was realised. The results of X-ray diffraction studies indicated the absence of oxide phases and no evidence of interfacial reaction products except in the case of Mg–26.0 wt-%SiC sample. Results of physical and mechanical properties characterisation revealed that an increase in the amount of SiC particulates incorporated leads to an increase in macrohardness and elastic modulus, which does not affect the 0.2% yield strength and reduces the ultimate tensile strength, ductility, and coefficient of thermal expansion. The weight percentage of SiC particulates when plotted against hardness and 0.2% yield strength revealed a linear correlationship. An attempt is made to investigate the effect of increasing amount of SiC particulates on the microstructural features, and physical and mechanical properties of the magnesium matrix.  相似文献   

10.
11.
Composite bodies in the system Al–Zr–C, with about 95% relative density, were obtained by heating the compact body of powder mixture consisting of Al and ZrC (5 : 1 mol %) in Ar at 1100–1500°C for various lengths of time. Components of the material heated at more than 1200°C were Al, Al3Zr, ZrC and AlZrC2. The Al3Zr exhibited plate-like aggregation, and its size increased with increasing temperature. In the material heated at 1500°C for 1 h, the largest plate-like Al3Zr aggregation was 2000 m long and 133 m thick. Then the AlZrC2 was present as well-proportioned hexagonal platelet particles with a 8–9 m diameter and a 1–2 m thickness in the interior of the plate-like Al3Zr aggregation and Al matrix phase. The average three-point bending strength of the bodies was 140–190 MPa, and the maximum strength was 203 MPa in the body heated at 1300°C for 1 h. The body heated at 1500°C for 1 h showed high oxidation resistivity to air up to 1000°C.  相似文献   

12.
Abstract

TiC/Ti–6Al–4V composites containing various volume fractions of TiC were produced by induction skull melting and common casting utilising in situ reaction between titanium and carbon powder. The microstructure and room tensile properties of as cast and heat treated TiC/Ti–6Al–4V composites were investigated. Bar-like or small globular eutectic TiC were found in 5 vol.-%TiC/Ti–6Al–4V composite, whereas the equiaxed or dendritic primary TiC particles were found to be the main reinforcements in 10 and 15 vol.-%TiC/Ti–6Al–4V composites. The as cast TiC/Ti–6Al–4V composites have shown higher strength but lower ductility than those of monolithic Ti–6Al–4V alloy. The shape and fracture of TiC particles can strongly influence the fracture and failure of the composites, and so the ultimate tensile strengths and elongations of as cast composites reduce with the increase in volume fraction of TiC. TiC particles appear to be spheroidised, and titanium precipitation can be found within large TiC particles after heat treatment at 1050°C for 8 h, which can promote the resistance to fracture of composites. Therefore, the elongations of the composites increase significantly, and the ultimate tensile strengths also have marginal increase especially for the 10 and 15 vol.-%TiC/Ti–6Al–4V composites after heat treatment.  相似文献   

13.
Abstract

In situ metal matrix composites (MMCs) with Mg2Si particulate reinforcement have been developed recently as ultralight materials. In this paper, a brief overview of the physical and mechanical properties of Mg2Si and the current status of research on Mg2Si reinforced MMCs is presented, followed by more detailed information on recent progress in the research group of the present authors. The effects of element additions and processing parameters on the microstructure of the composites obtained by gravity casting are discussed, together with some mechanical property data.  相似文献   

14.
This paper reports on the fabrication and characterization of fine scale piezoelectric composites with 1–3 connectivity using fibers derived from a metal alkoxide sol-gel process. Using this technique, pure thickness mode resonance for this type of composite has been increased from 15 MHz up to 70 MHz by maintaining pillar aspect ratio requirements. Piezoceramic fibers of Nb or La modified lead zirconate titanate (PZT) were produced with final diameters ranging from 15 to 50 μm. Composites having 1–3 connectivity were produced using the fibers as pillars. Composites could be fabricated with volume fractions from 10 to 45% allowing tailoring of both the dielectric constant and acoustic impedance without degrading coupling. Dielectric constant, polarization and coercive field values varied slightly from bulk values due to clamping by the polymer matrix, increasing as the fiber diameter decreased. Composites with resonance frequencies ranging from 15 to 70 MHz were studied. The thickness dependence of the properties gave indications to radial mode/thickness mode interactions at pillar aspect ratios near 1.7 to 1 thickness to diameter. Coupling coefficients (kt) from 58% to 73% with mechanical quality factors <15 were detected. Received: 4 April 2000 / Reviewed and accepted: 8 June 2000  相似文献   

15.
Pre-treated Si powder (Sip) and 6061Al powder were used to fabricate high-fraction Sip/6061Al composites via pressureless sintering, and the effects of the Sip content and the sintering temperature on the microstructures and properties of the composites were studied. The results show that in the composites, there exist MgAl2O4 nanocrystalline particles, and the Si phase varied from a discontinuous particulate state to a semi-continuous skeleton state as the Si content increased from 30 to 50?wt-%. Densities, bending strengths, hardness, and thermal conductivities of the composites all increased initially and then decreased with the sintering temperature. The 680°C sintered 30?wt-% Sip/6061Al composites and the 700°C sintered 50?wt-% Sip/6061Al composites have the optimal mechanical and thermophysical properties.  相似文献   

16.
Abstract

A stirring process containing two steps, i.e. liquid and then semisolid stirring, was used to produce SiC particle reinforced aluminium matrix composites. The major advantages of this process are that full wetting of SiC particles by molten aluminium can be readily achieved at relatively low stirring rates, and undesirable Al4 C3 is not formed at the Al/SiC interface due to lower processing temperatures. Cast Al–Si matrix composites reinforced with 15 and 20 vol.-%SiC particles were produced in the present work. The mechanical properties of the composites were evaluated under the conditions of investment mould casting and heat treatment. For the composites obtained without employing semisolid stirring, the aggregation of SiC particles observed in the microstructure of composites resulted in quite poor mechanical properties. Observations and analyses indicated that some Al/SiC interfaces were very clean, and a reaction product of spinel MgAl2O4 was also found at some Al/SiC interfaces. Silicon dioxide (SiO2 ) was found to exist on the surface of as purchased and 250°C dried SiC powders. This SiO2 is involved in the spinel reaction at the interface between the SiC particles and the matrix in the present Al/SiC composites.  相似文献   

17.
Abstract

TiCpowders have been spontaneously infiltrated by molten Al with the aid of a K-Al-Fflux. The fluxdissolves the oxide film on the surface of molten Al, facilitating wetting between 'clean' Al and TiC particle surfaces, enabling liquid to be rapidly drawn into the network of TiC particles by capillary forces. The resulting master alloy was readily incorporated and dispersedinto molten Al, Cu, and Mg, indicative that the additive was readily wetted by all three molten metals and that the particles in the additive were not joined together by strong bonds. The use of a flux to facilitate cleaning of TiC, dissolution of Al in the meltand the avoidance of direct contactbetween TiC and melt surface oxides, all contribute to improved wetting. The slightly poorer quality of the particle distribution and the lowest yield in the Cu based alloy, suggest that wetting is worst in this system.  相似文献   

18.
Al–Cu matrix composites reinforced with diamond particles (Al–Cu/diamond composites) have been produced by a squeeze casting method. Cu content added to Al matrix was varied from 0 to 3.0 wt.% to detect the effect on thermal conductivity and thermal expansion behavior of the resultant Al–Cu/diamond composites. The measured thermal conductivity for the Al–Cu/diamond composites increased from 210 to 330 W/m/K with increasing Cu content from 0 to 3.0 wt.%. Accordingly, the coefficient of thermal expansion (CTE) was tailored from 13 × 10−6 to 6 × 10−6/K, which is compatible with the CTE of semiconductors in electronic packaging applications. The enhanced thermal conductivity and reduced coefficient of thermal expansion were ascribed to strong interface bonding in the Al–Cu/diamond composites. Cu addition has lowered the melting point and resulted in the formation of Al2Cu phase in Al matrix. This is the underlying mechanism responsible for the strengthening of Al–Cu/diamond interface. The results show that Cu alloying is an effective approach to promoting interface bonding between Al and diamond.  相似文献   

19.
Short carbon fibres were coated with alumina by sol–gel process. Uncoated and alumina-coated short carbon fibre–Al composites were fabricated by gas pressure infiltration process. The effects of alumina coating and extrusion deformation on microstructures and thermal properties of the composites were studied. The results show that alumina coating is effective to improve the quality of the short carbon fibre preform as well as act as diffusion barrier to impede interfacial harmful chemical reactions between aluminium and short carbon fibres, which would increase the thermal properties of the composites. Extrusion deformation can orient the carbon fibres to the extrusion direction to improve their degree of orientation, meanwhile decreasing their aspect ratio. Extrusion deformation has a beneficial effect on the thermal conductivity of the composites. However, its effect on coefficient of thermal expansion of the composites is small because the effects of the improvement in degree of orientation and the decrease of aspect ratio tend to cancel each other somewhat.  相似文献   

20.
Aluminum matrix composites reinforced with diamond particles were consolidated by spark plasma sintering. Metalloid silicon was added (Al–Si/diamond composites) to investigate the effect. Silicon addition promotes the formation of molten metal during the sintering to facilitate the densification and enhance the interfacial bonding. Meanwhile, the alloying metal matrix precipitates the eutectic-Si on the diamond surfaces acting as the transitional part to protect the improved interface during the cooling stage. The improved interface and precipitating eutectic-Si phase are mutually responsible for the optimized properties of the composites. In this study, for the Al–Si/diamond composite with 55 vol.% diamonds of 75 μm diameter, the thermal conductivity increased from 200 to 412 Wm−1 K−1, and the coefficient of thermal expansion (CTE) decreased from 8.9 to 7.3 × 10−6 K−1, compared to the Al/diamond composites. Accordingly, the residual plastic strain was 0.10 × 10−3 during the first cycle and rapidly became negligible during the second. Additionally, the measured CTE of the Al–Si/diamond composites was more conform to the Schapery’s model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号