首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, analytical solutions are presented for the wave propagation in functionally graded (FG) nanoplates using a nonlocal strain gradient theory and four-variable refined plate theory considering the magnetic field. The size effects are included using nonlocal strain gradient theory that has two length scale parameters, and the nanoplate is modeled as a plate using four-variable refined plate theory. From the knowledge of authors, it is the first time that the influences of magnetic field on the wave propagation in FG nanoplates are investigated based on present methodology.  相似文献   

2.
In this paper, thermal buckling properties of a nanoplate with small-scale effects are studied. Based on the nonlocal continuum theory, critical temperatures for the nonlocal Kirchhoff and Mindlin plate theories are derived. The thermal buckling characteristics are presented with different models. The influences of the scale coefficients, half-wave numbers, width ratios, and the ratios of the width to the thickness are discussed. From this work, it can be observed that the small-scale effects are significant for the thermal buckling properties. Both the half-wave number and width ratio have influence. The nonlocal Kirchhoff plate theory is valid for the thin nanoplate, and the nonlocal Mindlin plate theory is more appropriate for simulating the mechanical behaviors of the thick nanoplate.  相似文献   

3.
The thermal buckling analysis of nanoplates is based on nonlocal elasticity theory with four-unknown shear deformation theory resting on Winkler–Pasternak elastic foundation. The nanoplate is assumed to be under three types of thermal loadings, namely uniform temperature rise, linear temperature rise, and nonlinear temperature rise through the thickness. The theory involves four unknown variables with small-scale effects, as against five in the case of other higher-order theories and first-order shear deformation theory. Closed-form solution for theory was also presented. Results are presented to discuss the influences of the nonlocal parameter, aspect ratio, side-to-thickness ratio, and elastic foundation parameters on the thermal buckling characteristics of analytical rectangular nanoplates.  相似文献   

4.
In this article, the vibration frequency of an orthotropic nanoplate under the effect of temperature change is investigated. Using nonlocal elasticity theory, governing equations are derived. Based on the generalized differential quadrature method for cantilever and propped cantilever boundary conditions, the frequencies of orthotropic nanoplates are considered and the obtained results are compared with valid reported results in the literature. The effects of temperature variation, small scale, different boundary conditions, aspect ratio, and length on natural nondimensional frequencies are studied. The present analysis is applicable for the design of rotating and nonrotating nano-devices that make use of thermo-mechanical vibration characteristics of nanoplates.  相似文献   

5.
Axial buckling characteristics of single-walled carbon nanotubes (SWCNTs) including thermal environment effect are studied in this paper. Eringen’s nonlocal elasticity equations are incorporated into the classical Donnell shell theory to establish a nonlocal elastic shell model which takes small-scale effects into account. The Rayleigh–Ritz technique is implemented in conjunction with the set of beam functions as modal displacement functions to consider the four commonly used boundary conditions namely as simply supported–simply supported, clamped–clamped, clamped–simply supported, and clamped-free in the buckling analysis. Selected numerical results are presented to demonstrate the influences of small scale effect, aspect ratio, thermal environment effects and boundary conditions in detail. It is found that the value of aspect ratio has different effects on the critical axial buckling loads of SWCNTs in low and high temperature environments. Also, it is observed that the difference between the thermal axial buckling responses of SWCNTs relevant to various boundary conditions is more prominent for higher values of nonlocal elasticity constant.  相似文献   

6.
This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier’s method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.  相似文献   

7.
This article presents the buckling analysis of isotropic nanoplates using the two variable refined plate theory and nonlocal small scale effects. The two variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the nanoplate are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular nanoplate subjected to in-plane loading has been obtained by using the Navier’s method. Numerical results obtained by the present theory are compared with available exact solutions in the literature. The effect of nonlocal scaling parameter, mode numbers and aspect ratios of the nanoplates on buckling load are investigated and discussed in detail in the present work. It can be concluded that the present theory, which does not require shear correction factor, is not only simple but also comparable to the first-order and higher order shear deformable theory.  相似文献   

8.
Dynamic stability of embedded multi-walled carbon nanotubes (MWCNTs) in an elastic medium and thermal environment and subjected to an axial compressive force is studied based on the nonlocal elasticity and Timoshenko beam theory. The developed nonlocal beam model has the capability to consider the small scale effects. The generalized differential quadrature method is employed to discretize the dynamic governing differential equations of MWCNTs with various end supports. A parametric study is conducted to investigate the influences of static load factor, temperature change, nonlocal parameter, slenderness ratio, and spring constant of elastic medium on the dynamic stability characteristics of MWCNTs.  相似文献   

9.
In this study, the free vibration behavior of circular graphene sheet under in-plane pre-load is studied. By using the nonlocal elasticity theory and Kirchhoff plate theory, the governing equation is derived for single-layered graphene sheets (SLGSs). The closed-form solution for frequency vibration of circular graphene sheets under in-plane pre-load has been obtained and nonlocal parameter appears into arguments of Bessel functions. The results are subsequently compared with valid result reported in the literature. The effects of the small scale, pre-load, mode number and boundary conditions on natural frequencies are investigated. The results are shown that at smaller radius of circular nanoplate, the effect of in-plane pre-loads is more importance.  相似文献   

10.
The effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in an elastic medium is investigated by developing a nonlocal nanorod model with uncertainties. Considering limited experimental data, uncertain-but-bounded variables are employed to quantify the uncertain material properties in this paper. According to the nonlocal elasticity theory, the governing equations are derived by applying the Hamilton’s principle. An iterative algorithm based interval analysis method is presented to evaluate the lower and upper bounds of the wave dispersion curves. Simultaneously, the presented method is verified by comparing with Monte-Carlo simulation. Furthermore, combined effects of material uncertainties and various parameters such as nonlocal scale, elastic medium and lateral inertia on wave dispersion characteristics of nanorod are studied in detail. Numerical results not only make further understanding of wave propagation characteristics of nanostructures with uncertain material properties, but also provide significant guidance for the reliability and robust design of the next generation of nanodevices.  相似文献   

11.
In this study, thermal and small-scale effects on the flapwise bending vibrations of a rotating nanoplate, which can be the basis of nano-turbine design, have been analyzed. The nano-turbine is made of an orthotropic nanoplate with a setting angle that is modeled based on the classical plate theory (CPT) with cantilever boundary conditions. The axial forces are also included in the model as the true spatial variation due to the rotation and temperature change. The governing equations and boundary conditions are derived according to Hamilton's principle and the governing equations are solved with the aid of the generalized differential quadrature method. The effects of small-scale parameter, nondimensional angular velocity, temperature change, and setting angles in the first four nondimensional frequencies are discussed. Due to the consideration of the rotating effects, results of this study are applicable in nano-machines, such as nano-motors, nano-rotor, and other rotating nano-structures. Also, by considering the effect of thermal loading on rotation of a nanoplate, the results are useful in the design of nano-turbines.  相似文献   

12.
As a first endeavor, the axisymmetric free and forced vibrations of circular single- and double-layered nanoplates under initial in-plane radial stresses and embedded in an elastic medium are investigated. The governing equations are derived by decoupling the nonlocal constitutive equations of the Eringen theory in polar coordinates in conjunction with the classical plate theory. The elastic medium is modeled as a two-parameter elastic foundation (Pasternak type). Galerkin’s method is employed to solve the resulting equation for vibration frequencies and dynamic response. The effects of small scale together with the other parameters such as initial in-plane load, Winkler and shear elastic foundation coefficients and the radius of the nanoplate are investigated. It is shown that the corresponding natural frequencies obtained by nonlocal elasticity theory are very different from those predicted by classical elasticity theory when the radius of the nanoplate is less than an approximate limit value.  相似文献   

13.
The buckling and vibration of thick rectangular nanoplates is analyzed in this article. A graphene sheet is theoretically assumed and modeled as a nanoplate in this study. The two-variable refined plate theory (RPT) is applied to obtain the differential equations of the nanoplate. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using a shear correction factor. Besides, the analysis is based on the nonlocal theory of elasticity to take the small-scale effects into account. For the first time, the finite strip method (FSM) based on RPT is employed to study the vibration and buckling behavior of nanoplates and graphene sheets. Hamilton’s principle is employed to obtain the differential equations of the nanoplate. The stiffness, stability and mass matrices of the nanoplate are formed using the FSM. The displacement functions of the strips are evaluated using continuous harmonic function series which satisfy the boundary conditions in one direction and a piecewise interpolation polynomial in the other direction. A matrix eigenvalue problem is solved to find the free vibration frequency and buckling load of the nanoplates subjected to different types of in-plane loadings including the uniform and nonuniform uni-axial and biaxial compression. Comparison studies are presented to verify the validity and accuracy of the proposed nonlocal refined finite strip method. Furthermore, a number of examples are presented to investigate the effects of various parameters (e.g., boundary conditions, nonlocal parameter, aspect ratio, type of loading) on the results.  相似文献   

14.
A single-elastic beam model has been developed to analyze the thermal vibration of single-walled carbon nanotubes (SWCNT) based on thermal elasticity mechanics, and nonlocal elasticity theory. The nonlocal elasticity takes into account the effect of small size into the formulation. Further, the SWCNT is assumed to be embedded in an elastic medium. A Winkler-type elastic foundation is employed to model the interaction of the SWCNT and the surrounding elastic medium. Differential quadrature method is being utilized and numerical solutions for thermal-vibration response of SWCNT is obtained. Influence of nonlocal small scale effects, temperature change, Winkler constant and vibration modes of the CNT on the frequency are investigated. The present study shows that for low temperature changes, the difference between local frequency and nonlocal frequency is comparatively high. With embedded CNT, for soft elastic medium and larger scale coefficients (e0a) the nonlocal frequencies are comparatively lower. The nonlocal model-frequencies are always found smaller than the local model-frequencies at all temperature changes considered.  相似文献   

15.
U. G��ven 《Acta Mechanica》2011,221(3-4):321-325
In the present work, the propagation of longitudinal stress waves is investigated using a modified couple stress theory. The analysis of wave motion is based on a Love rod model including the effects of lateral deformation. The present analysis also considers the effect of shear stress components. By applying Hamilton??s principle, the explicit nonlocal elasticity solution is obtained, and the effects of shear stress and length scale parameter are discussed.  相似文献   

16.
In this article, an analytical method is presented for thermo-mechanical vibration analysis of functionally graded (FG) nanoplates with different boundary conditions under various thermal loadings including uniform, linear, and nonlinear temperature rise via a four-variable plate theory considering neutral surface position. The temperature-dependent material properties of FG nanoplate vary gradually along the thickness according to the Mori-Tanaka homogenization scheme. The exactness of solution is confirmed by comparing obtained results with those provided in the literature. A parametric study is performed investigating the effects of nonlocal parameter, temperature fields, gradient index, and boundary conditions on vibration behavior of FG nanoplates.  相似文献   

17.
将非局部弹性理论和应变梯度理论结合,再根据流体滑移边界理论,建立了考虑流体和固体小尺度效应的充流单壁碳纳米管(SWCNT)流固耦合动力学模型,分别以非局部应力效应、应变梯度效应和流体滑移边界效应模拟微观小尺度效应对系统的影响,推导得出充流单壁碳纳米管的Euler-Bernoulli梁波动控制方程。通过对控制方程的求解,分析材料不同类型尺度效应对充流碳纳米管的振动和波动特性影响。结果显示,应变梯度效应和流体边界效应对低频波动起促进作用,对高频波动起阻尼作用,应力非局部效应则对波动始终产生阻尼作用。三种尺度效应对低流速系统的振动有促进作用,而对高流速系统产生阻尼作用。  相似文献   

18.
ABSTRACT

This article investigates the nonlinear vibration of piezoelectric nanoplate with combined thermo-electric loads under various boundary conditions. The piezoelectric nanoplate model is developed by using the Mindlin plate theory and nonlocal theory. The von Karman type nonlinearity and nonlocal constitutive relationships are employed to derive governing equations through Hamilton's principle. The differential quadrature method is used to discretize the governing equations, which are then solved through a direct iterative method. A detailed parametric study is conducted to examine the effects of the nonlocal parameter, external electric voltage, and temperature rise on the nonlinear vibration characteristics of piezoelectric nanoplates.  相似文献   

19.
Axial buckling analysis of double-walled Boron Nitride nanotubes (DWBNNTs) embedded in an elastic medium under combined electro-thermo-mechanical loadings is presented in this article. Virtual displacement method based on nonlocal cylindrical piezoelasticity continuum shell theory is employed to derive the equilibrium equations. Boron Nitride nanotube (BNNT) is assumed to be surrounded by a bundle of carbon nanotubes (CNTs) as elastic medium for reinforcement. The elastic medium is simulated as Winkler–Pasternak foundation, and adjacent layers interactions are assumed to have been coupled by van der Walls (vdW) force evaluated based on the Lennard–Jones model. The effects of parameters such as electric and thermal loads, elastic medium and small scale are investigated on the buckling behavior of the DWBNNTs. The electric field and its direction are found to have affected the magnitude of the critical buckling load. Moreover, an analysis is carried out to estimate the nonlocal critical electro-thermo-mechanical load for the axial buckling of embedded DWBNNTs.  相似文献   

20.
Wang Q  Wang CM 《Nanotechnology》2007,18(7):075702
In this paper, the constitutive relations of nonlocal elasticity theory are presented for application in the analysis of carbon nanotubes (CNTs) when modelled as Euler-Bernoulli beams, Timoshenko beams or as cylindrical shells. In particular, the shear stress and strain relation for the nonlocal Timoshenko beam theory is discussed in great detail due to a misconception by some researchers that the nonlocal effect should appear in this constitutive relation. Different theories for proposing the value of the small scale parameter are also introduced and a recommendation for the value from the standpoint of wave propagation of CNTs is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号